2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、207模擬試卷(一)一、填空題(每小題3分,共30分)1有3個不同節(jié)點的高斯求積公式的代數精度是次的.2設,,則=.,=______.152210142??????????????A342????????????x?A1x3已知y=f(x)的均差(差商),,01214[]3fxxx?12315[]3fxxx?,那么均差=.23491[]15fxxx?0238[]3fxxx?423[]fxxx4已知n=4時Newton-Cotes求積公式

2、的系數分別是:則1524516907)4(2)4(1)4(0???CCC=.)4(3C5解初始值問題的改進的Euler方法是階方法;00()()yfxyyxy??????6求解線性代數方程組的高斯—塞德爾迭代公式為,123123123530.13260.7223.51xxxxxxxxx???????????????若取則.(0)(111)???x(1)??x7求方程根的牛頓迭代格式是.()xfx?8是以整數點為節(jié)點的Lagrange插值

3、基函數,則01()()()nxxx????01nxxx?=.0()nkjkkxx???9解方程組的簡單迭代格式收斂的充要條件是.?Axb(1)()kk???xBxg10設,則的三次牛頓插值多項式為(1)1(0)0(1)1(2)5ffff????()fx,其誤差估計式為.二、綜合題二、綜合題(每題10分,共60分)1求一次數不超過4次的多項式滿足:,,()px(1)15p?(1)20p??(1)30p???,.(2)57p?(2)72p?

4、?2構造代數精度最高的形式為的求積公式,并求出10101()()(1)2xfxdxAfAf???20911122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432pxxxxxxxxxx???????????????其他方法:設233()1520(1)15(1)7(1)(1)()pxxxxxaxb??????????令,,求出a和b.(2)57p?(2)72p??2取

5、,令公式準確成立,得:()1fxx?.0112AA??011123AA??013A?116A?時,公式左右;時,公式左公式右2()fxx?14?3()fxx?15?524?∴公式的代數精度.2?3此方程在區(qū)間內只有一個根,而且在區(qū)間(2,4)內。設)2(?s2ln)(???xxxf則,,Newton法迭代公式為xxf11)(??21)(xxf?,1)ln1(112ln1?????????kkkkkkkkxxxxxxxx?210?k取,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論