2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩99頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Regression Analysis & ANOVA,1,迴歸分析與變異數(shù)分析概論,洪弘祈朝陽科技大學(xué)工業(yè)工程與管理系副教授,Regression Analysis & ANOVA,2,參數(shù)之最小均方差估計(jì)式 誤差估計(jì) 迴歸分析之假設(shè)檢定 迴歸分析之信賴區(qū)間 預(yù)測(cè) 模式之適合度檢定,大綱,Regression Analysis & ANOVA,3,定義,RegressThe act of rea

2、soning backwardRegressionA functional relationship between two or more correlated variables that is often empirically determined from data and is used esp. to predict values of one variable when given values of the ot

3、hers.,Regression Analysis & ANOVA,4,Regression Analysis & ANOVA,5,XY散佈圖,Regression Analysis & ANOVA,6,linear model (equation) probabilistic linear model simple linear regression model regre

4、ssion coefficients,Regression Analysis & ANOVA,7,multiple regression model multiple linear regression model intercept partial regression coefficients contour plot,Regression Analysis & ANOVA,8,de

5、pendent variable or response y may be related to k independent or regressor variables interaction any regression model that is linear in parameters (the b’s) is a linear regression model, regardless of the

6、 shape of the surface that it generates.,Regression Analysis & ANOVA,9,Regression Analysis & ANOVA,10,模式參數(shù)之最小均方差估計(jì)式,簡(jiǎn)單線性迴歸,Regression Analysis & ANOVA,11,method of least squares least squares normal equa

7、tions fitted or estimated regression line residual,Regression Analysis & ANOVA,12,Regression Analysis & ANOVA,13,Regression Analysis & ANOVA,14,Example 1 之迴歸線,Regression Analysis & ANOVA,15,Example

8、1 之 Excel 報(bào)表,Regression Analysis & ANOVA,16,Example 1 適合度檢定,,Regression Analysis & ANOVA,17,Example 1 適合度檢定,Regression Analysis & ANOVA,18,複迴歸,Regression Analysis & ANOVA,19,Matrix Approach (I),,Regressio

9、n Analysis & ANOVA,20,Regression Analysis & ANOVA,21,* k = p - 1,Regression Analysis & ANOVA,22,Regression Analysis & ANOVA,23,Regression Analysis & ANOVA,24,Regression Analysis & ANOVA,25,迴規(guī)模式適合度

10、檢定,normal probability plot of residuals standardize outlier,Regression Analysis & ANOVA,26,Regression Analysis & ANOVA,27,Regression Analysis & ANOVA,28,Regression Analysis & ANOVA,29,Regression Anal

11、ysis & ANOVA,30,Regression Analysis & ANOVA,31,Regression Analysis & ANOVA,32,Regression Analysis & ANOVA,33,Key Concepts and Formulas,I.A Linear Probabilistic Model1.When the data exhibit a linear re

12、lationship, the appropriate model is y = a + b x + e . 2.The random error e has a normal distribution with mean 0 and variance s 2.II.Method of Least Squares1.Estimates a and b, for a and b, are chosen to mi

13、nimize SSE,The sum of the squared deviations about the regression line,,Regression Analysis & ANOVA,34,2.The least squares estimates are b = Sxy / Sxx and III.Analysis of Variance1. Total SS = S

14、SR + SSE, where Total SS = Syy and SSR = (Sxy)2 / Sxx.2. The best estimate of s 2 is MSE = SSE / (n - 2).IV.Testing, Estimation, and Prediction1.A test for the significance of the linear regression—H0 : b = 0

15、can be implemented using one of the two test statistics:,Regression Analysis & ANOVA,35,2.The strength of the relationship between x and y can be measured usingwhich gets closer to 1 as the relationship gets

16、 stronger.3.Use residual plots to check for nonnormality, inequality of variances, and an incorrectly fit model.4.Confidence intervals can be constructed to estimate the intercept a and slope b of the regressio

17、n line and to estimate the average value of y, E( y ), for a given value of x.5.Prediction intervals can be constructed to predict a particular observation, y, for a given value of x. For a given x, prediction

18、intervals are always wider than confidence intervals.,Regression Analysis & ANOVA,36,V.Correlation Analysis1.Use the correlation coefficient to measure the relationship between x and y when both variables are

19、 random:2.The sign of r indicates the direction of the relationship; r near 0 indicates no linear relationship, and r near 1 or -1 indicatesa strong linear relationship.3.A test of the significance of the co

20、rrelation coefficient is identical to the test of the slope b.,Regression Analysis & ANOVA,37,Cause and Effect,X could cause YY could cause XX and Y could cause each otherX and Y could be caused by a third varia

21、ble ZX and Y could be related by chanceBad (or good) luckNeed careful examination of the study. Try to find previous evidences or academic explanations.,Regression Analysis & ANOVA,38,Multiple Linear Regression

22、,Multiple Regression ModelA regression model that contains more than one regressor variable.Multiple Linear Regression ModelA multiple regression model that is a linear function of the unknown parameters b0, b1, b2, a

23、nd so on.Examples:Nonlinear:,Regression Analysis & ANOVA,39,Intercept: b0Partial regression coefficients: b1, b2,Regression Analysis & ANOVA,40,Interaction: b12 can be viewed and analyzed as a new parameter

24、 b3 (Replace x12 by a new variable x3),Regression Analysis & ANOVA,41,Interaction: b11 can be viewed and analyzed as a new parameter b3 (Replace x2 by a new variable x3),Regression A

25、nalysis & ANOVA,42,The Analysis Procedure,When you perform multiple regression analysis, use a step-by-step approach:1.Obtain the fitted prediction model.2.Use the analysis of variance F test and R 2 to determi

26、ne how well the model fits the data.3.Check the t tests for the partial regression coefficients to seewhich ones are contributing significant information in the presence of the others.4.If you choose to compa

27、re several different models, use R 2(adj) to compare their effectiveness5.Use-computer generated residual plots to check for violation of the regression assumptions.,Regression Analysis & ANOVA,43,The quadrati

28、c model is an example of a second-order model because it involves a term whose components sum to 2 (in this case, x2 ).It is also an example of a polynomial model—a model that takes the form,A Polynomial Regression Mode

29、l,Regression Analysis & ANOVA,44,Using Quantitative and Qualitative Predictor Variables in a Regression Model,The response variable y must be quantitative.Each independent predictor variable can be either a quantita

30、tive or a qualitative variable, whose levels represent qualities or characteristics and can only be categorized.We can allow a combination of different variables to be in the model, and we can allow the variables to int

31、eract.A quantitative variable x can be entered as a linear term, x, or to some higher power such as x 2 or x3 .You could use the first-order model:,Regression Analysis & ANOVA,45,We can add an interaction term and

32、 create a second-order model:Qualitative predictor variable are entered into a regression model through dummy or indicator variables.If each employee included in a study belongs to one of three ethnic groups—say, A, B

33、, or C—you can enter the qualitative variable “ethnicity” into your model using two dummy variables:,Regression Analysis & ANOVA,46,The model allows a different average response for each group.b 1 measures the diffe

34、rence in the average responses between groups B and A, while b 2 measures the difference between groups C and A. When a qualitative variable involves k categories, (k - 1) dummy variables should be added to the regressio

35、n model.,Regression Analysis & ANOVA,47,If the range of the residuals increases as increases and you know that the data are measurements of Poisson variables, you can stabilize the variance of the response by runn

36、ing the regression analysis onIf the percentages are calculated from binomial data, you can use the arcsin transformation,If E(y) and a single independent variable x are linearly related, and you fit a straight line to

37、 the data, then the observed y values should vary in a random manner about and a plot of the residuals against x will appear as shown in the next page.If you had incorrectly used a linear model to fit the data, the

38、residual plot would show that the unexplained variation exhibits a curved pattern, which suggests that there is a quadratic effect that has not been included in the model.,Regression Analysis & ANOVA,48,Stepwise Regr

39、ession Analysis,Try to list all the variables that might affect a college freshman’s GPA:-Grades in high school courses, high school GPA, SAT score, ACT score-Major, number of units carried, number of courses tak

40、en-Work schedule, marital status, commute or live on campusA stepwise regression analysis fits a variety of models to the data, adding and deleting variables as their significance in the presence of the other variabl

41、es is either significant or nonsignificant, respectively.Once the program has performed a sufficient number of iterations and no more variables are significant when added to the model, and none of the variables are nons

42、ignificant when removed, the procedure stops.These programs always fit first-order models and are not helpful in detecting curvature or interaction in the data.,Regression Analysis & ANOVA,49,Selection of Variables

43、in Multiple Regression,All Possible RegressionsR2p or adj R2p MSE(p)CpStepwise RegressionStart with the variable with the highest correlation with Y.Forward SelectionBackward Selection,Regression Analysis & A

44、NOVA,50,Misinterpreting a Regression Analysis,A second-order model in the variables might provide a very good fit to the data when a first-order model appears to be completely useless in describing the response variable

45、y.CausalityBe careful not to deduce a causal relationship between a response y and a variable x.MulticollinearityNeither the size of a regression coefficient nor its t-value indicates the importance of the variable

46、 as a contributor of information. This may be because two or more of the predictor variables are highly correlated with one another; this is called multicollinearity.,Regression Analysis & ANOVA,51,Multicollinearity

47、can have these effects on the analysis:-The estimated regression coefficients will have large standarderrors, causing imprecision in confidence and prediction intervals.-Adding or deleting a predictor variable

48、may cause significant changes in the values of the other regression coefficients.How can you tell whether a regression analysis exhibits multicollinearity?-The value of R 2 is large, indicating a good fit, but the

49、 individual t-tests are nonsignificant.-The signs of the regression coefficients are contrary to what you would intuitively expect the contributions of those variables to be.-A matrix of correlations, g

50、enerated by the computer, shows you which predictor variables are highly correlated with each other and with the response y.,Regression Analysis & ANOVA,52,The last three columns of the matrix show significant co

51、rrelations between all but one pair of predictor variables:,Regression Analysis & ANOVA,53,,實(shí)驗(yàn)?zāi)康?對(duì)y影響最大的變數(shù)為何?如何設(shè)定x1, x2, …, xp使y值趨近最佳值?如何設(shè)定x1, x2, …, xp使y值得變異最???如何設(shè)定x1, x2, …, xp使不可控制因素z1, z2, …, zp之影響最小?,實(shí)驗(yàn)設(shè)計(jì)(DO

52、E)簡(jiǎn)介,Regression Analysis & ANOVA,54,一般實(shí)驗(yàn)進(jìn)行方式,Best-guess approachNo Good, Guess AgainGood Enough, Stop!On-factor-at-a-timeSelecting a baseline starting pointInteractions ruin everything,Regression Analysis &

53、 ANOVA,55,實(shí)驗(yàn)計(jì)劃法(DOE),在一個(gè)或連串的試驗(yàn)中刻意地改變製程輸入?yún)?shù)值, 以便觀察並找出影響製程輸出變數(shù)之因素.應(yīng)用:改進(jìn)製程產(chǎn)出率降低製程變異, 改善產(chǎn)品品質(zhì)降低研發(fā)時(shí)間降低總體成本評(píng)估各種可行之設(shè)定值評(píng)估各替代原料確定影響產(chǎn)品特性之因素,Regression Analysis & ANOVA,56,Example:Optimizing a Process,Regression Analy

54、sis & ANOVA,57,基本原則,複製(Replication)估計(jì)自然誤差中央極限定理隨機(jī)化(Randomization)“Averaging out” the effects from uncontrollable variables區(qū)隔化(Blocking)增進(jìn)實(shí)驗(yàn)之精確度,Regression Analysis & ANOVA,58,DOE之程序,問題之認(rèn)知與陳述選擇因子與其水準(zhǔn)選擇反應(yīng)

55、變數(shù)選擇適當(dāng)之實(shí)驗(yàn)設(shè)計(jì)執(zhí)行實(shí)驗(yàn)資料分析結(jié)論與建議Follow-up run and confirmation testIterativeNo more than 25% of available resources should be invested in the first experiment,Regression Analysis & ANOVA,59,Notes,使用統(tǒng)計(jì)以外之專業(yè)知識(shí)實(shí)驗(yàn)之設(shè)計(jì)與分析應(yīng)

56、愈簡(jiǎn)單愈好實(shí)驗(yàn)之統(tǒng)計(jì)分析結(jié)果與現(xiàn)實(shí)上之差異成本技術(shù)時(shí)間實(shí)驗(yàn)通常是遞迴式的前幾次實(shí)驗(yàn)通常只是學(xué)習(xí)經(jīng)驗(yàn)而已,Regression Analysis & ANOVA,60,實(shí)驗(yàn)設(shè)計(jì)之種類,單因子實(shí)驗(yàn)設(shè)計(jì)Variance Model單因子區(qū)隔設(shè)計(jì)二因子實(shí)驗(yàn)設(shè)計(jì)二水準(zhǔn)階層實(shí)驗(yàn)設(shè)計(jì)二水準(zhǔn)部分階層實(shí)驗(yàn)設(shè)計(jì)三水準(zhǔn)階層實(shí)驗(yàn)設(shè)計(jì)三水準(zhǔn)部分階層實(shí)驗(yàn)設(shè)計(jì)反應(yīng)曲面技術(shù),Regression Analysis & ANO

57、VA,61,因子篩選(Screening Experiments)二水準(zhǔn)部分階層實(shí)驗(yàn)設(shè)計(jì)Plackett-Burman DesignGroup-Screening Designs特定區(qū)間二水準(zhǔn)階層實(shí)驗(yàn)設(shè)計(jì)二水準(zhǔn)部分階層實(shí)驗(yàn)設(shè)計(jì)三水準(zhǔn)階層實(shí)驗(yàn)設(shè)計(jì)三水準(zhǔn)部分階層實(shí)驗(yàn)設(shè)計(jì)混合設(shè)計(jì)最佳化(Optimizing)反應(yīng)曲面技術(shù),實(shí)驗(yàn)設(shè)計(jì)之種類(Another Prospect),Regression Analysis &

58、; ANOVA,62,,變異數(shù)分析(ANOVA),The Model其中:yij為第(ij)個(gè)觀測(cè)值m為整體平均數(shù)ti為第i個(gè)因子水準(zhǔn)效應(yīng)eij為隨機(jī)誤差~N(0, s2)Fixed Effects Model Vs. Random Effects Model,Regression Analysis & ANOVA,63,其中:,Regression Analysis & ANOVA,64,假設(shè)檢定,若

59、拒絕H0 ,則不同之因子水準(zhǔn)對(duì)反應(yīng)變數(shù)有影響。反之,則無影響。,Regression Analysis & ANOVA,65,ANOVA表格,Treatment,Treatment,Treatment,(Treatment),Regression Analysis & ANOVA,66,其中:a 為因子之水準(zhǔn)數(shù) n 為每一水準(zhǔn)之資料個(gè)數(shù)(複製次數(shù)),所以,又,且,Treatment,Treatment,Tr

60、eatment,Treatment,Treatment,Treatment,,Regression Analysis & ANOVA,67,決策模式,若 F0 > Fa,a-1,a(n-1) ,則不同之因子水準(zhǔn)對(duì)反應(yīng)變數(shù)有影響。反之,則無影響。a 為相對(duì)風(fēng)險(xiǎn)。,Regression Analysis & ANOVA,68,Example:紙張強(qiáng)度之研究,Regression Analysis & A

61、NOVA,69,Treatment,Treatment,Regression Analysis & ANOVA,70,因?yàn)?F0 > F0.01,3,20 =4.96,所以,在a = 0.01下,不同之因子水準(zhǔn)對(duì)反應(yīng)變數(shù)有影響。亦即,有足夠的證據(jù)證明,Hardwood之含量對(duì)紙張之強(qiáng)度有影響。,ANOVA 表格,Regression Analysis & ANOVA,71,盒形圖(Box Plot),Regress

62、ion Analysis & ANOVA,72,殘值分析 (Residual Analysis),確定殘差(Residual)來自於自然變異N(0,s2),Regression Analysis & ANOVA,73,Residual Analysis I – Normality Plot,,Regression Analysis & ANOVA,74,Residual Analysis II,Residual

63、Vs. Factor Levels (Treatment),Regression Analysis & ANOVA,75,Residual Analysis III,Residual Vs. Estimates,Regression Analysis & ANOVA,76,各因子水準(zhǔn)平均值之信賴區(qū)間,MSE is the best estimate for s2.The 100*(1-a)% C.I. on mi is

64、Example: Find the 95% C. I. on Hardwood Concentration = 15%?,Regression Analysis & ANOVA,77,The Variance Model,當(dāng)因子之全部可能水準(zhǔn)(水準(zhǔn)個(gè)數(shù)較多時(shí))皆為研究之範(fàn)圍時(shí),吾人可利用Variance Model之方法來得知此因子之影響程度。步驟:從此因子所有可能因子水準(zhǔn)中,隨機(jī)抽樣a個(gè)水準(zhǔn)。利用ANOVA表

65、求得MSE與MSTreatment。此因子之外的自然變異:此因子所造成的變異:製程的整體變異:,Regression Analysis & ANOVA,78,Example,RandomSelect,,計(jì)算此因子對(duì)製程整體變異之重要性:,Regression Analysis & ANOVA,79,由此可知,若消除此因子所造成的製程變異,則整體製程變異將由8.86降至1.90,如下頁之圖形所示。,Regres

66、sion Analysis & ANOVA,80,Regression Analysis & ANOVA,81,單因子區(qū)隔設(shè)計(jì)(Blocking Design),若實(shí)驗(yàn)之資料來自於多個(gè)操作員或多臺(tái)機(jī)器時(shí),則可利用區(qū)隔化之方式,將不同操作員(或機(jī)器)所產(chǎn)生之影響區(qū)隔開來。 Example:化學(xué)成分對(duì)布料強(qiáng)度之影響,Regression Analysis & ANOVA,82,ANOVA表之架構(gòu),其中bj為第j個(gè)區(qū)

67、隔造成之效應(yīng)。,Regression Analysis & ANOVA,83,Example: (續(xù)),Regression Analysis & ANOVA,84,決策模式:因?yàn)镕0 = 75.13 >> F0.01,3,12 = 5.95,所以,不同的化學(xué)成分對(duì)布料之強(qiáng)度有影響。,Example: (續(xù)),Regression Analysis & ANOVA,85,拉丁方格設(shè)計(jì) (Latin

68、Square Design),需要兩個(gè)區(qū)隔方式時(shí),如原物料與操作員,則可以選擇使用拉丁方格設(shè)計(jì)。Example: 五個(gè)配方A, B, C, D, E,Regression Analysis & ANOVA,86,Regression Analysis & ANOVA,87,ANOVA表 – Latin Square Design,Regression Analysis & ANOVA,88,Regression

69、 Analysis & ANOVA,89,Regression Analysis & ANOVA,90,常見的拉丁方格設(shè)計(jì),需要三個(gè)區(qū)隔方式時(shí),可使用Graeco-Latin Square Design。(略),Regression Analysis & ANOVA,91,二因子實(shí)驗(yàn)設(shè)計(jì),二因子無交互作用,Regression Analysis & ANOVA,92,二因子有交互作用,Regression

70、 Analysis & ANOVA,93,One-factor at a time 之方法,Regression Analysis & ANOVA,94,Regression Analysis & ANOVA,95,二因子實(shí)驗(yàn)設(shè)計(jì)之模式,Regression Analysis & ANOVA,96,ANOVA表 – Two-Factor Factorial,Regression Analysis &

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論