2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、DeepFace:ClosingtheGaptoHumanLevelPerfmanceinFaceVerificationYanivTaigmanMingYangMarc’AurelioRanzatoFacebookAIResearchMenloParkCAUSAyanivmingyangranzato@LiWolfTelAvivUniversityTelAvivstractInmodernfacerecognitiontheconve

2、ntionalpipelineconsistsoffourstages:detect?align?represent?classify.Werevisitboththealignmentsteptherepresentationstepbyemployingexplicit3Dfacemodelingindertoapplyapiecewiseaffinetransfmationderiveafacerepresentationfrom

3、aninelayerdeepneuralwk.Thisdeepwkinvolvesmethan120millionparametersusingseverallocallyconnectedlayerswithoutweightsharingratherthanthestardconvolutionallayers.Thuswetraineditonthelargestfacialdatasettodateanidentitylabel

4、eddatasetoffourmillionfacialimagesbelongingtomethan4000identities.Thelearnedrepresentationscouplingtheaccuratemodelbasedalignmentwiththelargefacialdatabasegeneralizeremarkablywelltofacesinunconstrainedenvironmentsevenwit

5、hasimpleclassifier.Ourmethodreachesanaccuracyof97.35%ontheLabeledFacesintheWild(LFW)datasetreducingtheerrofthecurrentstateoftheartbymethan27%closelyapproachinghumanlevelperfmance.1.IntroductionFacerecognitioninunconstrai

6、nedimagesisatthefefrontofthealgithmicperceptionrevolution.Thesocialculturalimplicationsoffacerecognitiontechnologiesarefarreachingyetthecurrentperfmancegapinthisdomainbetweenmachinesthehumanvisualsystemservesasabufferfro

7、mhavingtodealwiththeseimplications.Wepresentasystem(DeepFace)thathasclosedthemajityoftheremaininggapinthemostpopularbenchmarkinunconstrainedfacerecognitionisnowatthebrinkofhumanlevelaccuracy.Itistrainedonalargedatasetoff

8、acesacquiredfromapopulationvastlydifferentthantheoneusedtoconstructtheevaluationbenchmarksitisabletooutperfmexistingsystemswithonlyveryminimaladaptation.Meoverthesystemproducesanextremelycompactfacerepresentationinsheerc

9、ontrasttotheshifttowardtensofthoussofappearancefeaturesinotherrecentsystems[572].Theproposedsystemdiffersfromthemajityofcontributionsinthefieldinthatitusesthedeeplearning(DL)framewk[321]inlieuofwellengineeredfeatures.DLi

10、sespeciallysuitablefdealingwithlargetrainingsetswithmanyrecentsuccessesindiversedomainssuchasvisionspeechlanguagemodeling.Specificallywithfacesthesuccessofthelearnedincapturingfacialappearanceinarobustmannerishighlydepen

11、dentonaveryrapid3Dalignmentstep.Thewkarchitectureisbasedontheassumptionthatoncethealignmentiscompletedthelocationofeachfacialregionisfixedatthepixellevel.ItistherefepossibletolearnfromtherawpixelRGBvalueswithoutanyneedto

12、applyseverallayersofconvolutionsasisdoneinmanyotherwks[1921].Insummarywemakethefollowingcontributions:(i)Thedevelopmentofaneffectivedeepneural(DNN)architecturelearningmethodthatleverageaverylargelabeleddatasetoffacesinde

13、rtoobtainafacerepresentationthatgeneralizeswelltootherdatasets(ii)Aneffectivefacialalignmentsystembasedonexplicit3Dmodelingoffaces(iii)Advancethestateoftheartsignificantlyin(1)theLabeledFacesintheWildbenchmark(LFW)[18]re

14、achingnearhumanperfmance(2)theYouTubeFacesdataset(YTF)[30]decreasingtheerrratetherebymethan50%.1.1.RelatedWkBigdatadeeplearningInrecentyearsalargenumberofphotoshavebeencrawledbysearchenginesuploadedtosocialwkswhichinclud

15、eavarietyofunconstrainedmaterialsuchasobjectsfacesscenes.Thislargevolumeofdatatheincreaseincomputationalresourceshaveenabledtheuseofmepowerfulstatisticalmodels.Thesemodelshavedrasticallyimprovedtherobustnessofvisionsyste

16、mstoseveralimptantvariationssuchasnonrigiddefmationsclutterocclusionilluminationallproblemsthatareattheceofmanycomputervisionapplications.Whileconventionalmachine1pointdetectbutapplyitinseveraliterationstorefineitsoutput

17、.AteachiterationfiducialpointsareextractedbyaSupptVectRegress(SVR)trainedtopredictpointconfigurationsfromanimagede.OurimagedeisbasedonLBPHistograms[1]butotherfeaturescanalsobeconsidered.Bytransfmingtheimageusingtheinduce

18、dsimilaritymatrixTtoanewimagewecanrunthefiducialdetectagainonanewfeaturespacerefinethelocalization.2DAlignmentWestartouralignmentprocessbydetecting6fiducialpointsinsidethedetectioncropcenteredatthecenteroftheeyestipofthe

19、nosemouthlocationsasillustratedinFig.1(a).TheyareusedtoapproximatelyscalerotatetranslatetheimageintosixanchlocationsbyfittingTi2d:=(siRiti)where:xjanch:=si[Ri|ti]?xjsourcefpointsj=1..6iterateonthenewwarpedimageuntilthere

20、isnosubstantialchangeeventuallycomposingthefinal2Dsimilaritytransfmation:T2d:=T12d?...?Tk2d.Thisaggregatedtransfmationgeneratesa2DalignedcropasshowninFig.1(b).ThisalignmentmethodissimilartotheoneemployedinLFWawhichhasbee

21、nusedfrequentlytoboostrecognitionaccuracy.Howeversimilaritytransfmationfailstocompensatefoutofplanerotationwhichisparticularlyimptantinunconstrainedconditions.3DAlignmentIndertoalignfacesundergoingoutofplanerotationsweus

22、eageneric3Dshapemodelregistera3Daffinecamerawhichareusedtowarpthe2Dalignedcroptotheimageplaneofthe3Dshape.Thisgeneratesthe3DalignedversionofthecropasillustratedinFig.1(g).Thisisachievedbylocalizingadditional67fiducialpoi

23、ntsx2dinthe2Dalignedcrop(seeFig.1(c))usingasecondSVR.Asa3Dgenericshapemodelwesimplytaketheaverageofthe3DscansfromtheUSFHumanIDdatabasewhichwerepostprocessedtoberepresentedasalignedverticesvi=(xiyizi)ni=1.Wemanuallyplace6

24、7anchpointsonthe3Dshapeinthiswayachievefullcrespondencebetweenthe67detectedfiducialpointstheir3Dreferences.Anaffine3Dto2DcameraPisthenfittedusingthegeneralizedleastsquaressolutiontothelinearsystemx2d=X3d?Pwithaknowncovar

25、iancematrixΣthatis?Pthatminimizesthefollowingloss:loss(?P)=rTΣ?1rwherer=(x2d?X3d?P)istheresidualvectX3disa(67?2)8matrixcomposedbystackingthe(28)matrices[x?3d(i)1?0?0x?3d(i)1]with?0denotingarowvectoffourzerosfeachreferenc

26、efiducialpointx3d(i).TheaffinecameraPofsize24isrepresentedbythevectof8unknowns?P.ThelosscanbeminimizedusingtheCholeskydecompositionofΣthattransfmstheproblemintodinaryleastsquares.Sincefexampledetectedpointsonthecontourof

27、thefacetendtobemenoisyastheirestimatedlocationislargelyinfluencedbythedepthwithrespecttothecameraangleweusea(67?2)(67?2)covariancematrixΣgivenbytheestimatedcovariancesofthefiducialpointerrs.FrontalizationSincefullperspec

28、tiveprojectionsnonrigiddefmationsarenotmodeledthefittedcameraPisonlyanapproximation.Indertoreducethecruptionofsuchimptantidentitybearingfactstothefinalwarpingweaddthecrespondingresidualsinrtothexycomponentsofeachreferenc

29、efiducialpointx3dwedenotethisas?x3d.Sucharelaxationisplausiblefthepurposeofwarpingthe2Dimagewithsmallerdisttionstotheidentity.Withoutitfaceswouldhavebeenwarpedintothesameshapein3Dlosingimptantdiscriminativefacts.Finallyt

30、hefrontalizationisachievedbyapiecewiseaffinetransfmationTfromx2d(source)to?x3d(target)directedbytheDelaunaytriangulationderivedfromthe67fiducialpoints1.Alsoinvisibletrianglesw.r.t.tocameraPcanbereplacedusingimageblending

31、withtheirsymmetricalcounterparts.3.RepresentationInrecentyearsthecomputervisionliteraturehasattractedmanyresearchefftsindeengineering.Suchdeswhenappliedtofacerecognitionmostlyusethesameoperattoalllocationsinthefacialimag

32、e.Recentlyasmedatahasbecomeavailablelearningbasedmethodshavestartedtooutperfmengineeredfeaturesbecausetheycandiscoveroptimizefeaturesfthespecifictaskath[19].Herewelearnagenericrepresentationoffacialimagesthroughalargedee

33、pwk.DNNArchitectureTrainingWetrainourDNNonamulticlassfacerecognitiontasknamelytoclassifytheidentityofafaceimage.TheoverallarchitectureisshowninFig.2.A3Daligned3channels(RGB)faceimageofsize152by152pixelsisgiventoaconvolut

34、ionallayer(C1)with32filtersofsize11x11x3(wedenotethisby32x11x11x3@152x152).Theresulting32featuremapsarethenfedtoamaxpoolinglayer(M2)whichtakesthemaxover3x3spatialneighbhoodswithastrideof2separatelyfeachchannel.Thisisfoll

35、owedbyanotherconvolutionallayer(C3)thathas16filtersofsize9x9x16.Thepurposeofthesethreelayersistoextractlowlevelfeatureslikesimpleedgestexture.Maxpoolinglayersmaketheoutputofconvolutionwksmerobusttolocaltranslations.Whena

36、ppliedtoalignedfacialimagestheymakethewkmerobusttosmallregistrationerrs.Howeverseverallevelsofpoolingwouldcausethewktoloseinfmationabouttheprecisepositionofdetailedfacialstructuremicrotextures.Henceweapplymaxpoolingonlyt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論