版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、BatchNmalization:AcceleratingDeepwkTrainingbyReducingInternalCovariateShiftSergeyIoffeSIOFFE@ChristianSzegedySZEGEDY@Google1600AmphitheatrePkwyMountainViewCA94043AbstractTrainingDeepNeuralwksiscomplicatedbythefactthatthe
2、distributionofeachlayer’sinputschangesduringtrainingastheparametersofthepreviouslayerschange.Thisslowsdownthetrainingbyrequiringlowerlearningratescarefulparameterinitializationmakesitnotiouslyhardtotrainmodelswithsaturat
3、ingnonlinearities.Werefertothisphenomenonasinternalcovariateshiftaddresstheproblembynmalizinglayerinputs.Ourmethoddrawsitsstrengthfrommakingnmalizationapartofthemodelarchitectureperfmingthenmalizationfeachtrainingminibat
4、ch.BatchNmalizationallowsustousemuchhigherlearningratesbelesscarefulaboutinitializationinsomecaseseliminatestheneedfout.AppliedtoastateoftheartimageclassificationmodelBatchNmalizationachievesthesameaccuracywith14timesfew
5、ertrainingstepsbeatstheiginalmodelbyasignificantmargin.UsinganensembleofbatchnmalizedwksweimproveuponthebestpublishedresultonImageclassification:reaching4.82%top5testerrexceedingtheaccuracyofhumanraters.1.IntroductionDee
6、plearninghasdramaticallyadvancedthestateoftheartinvisionspeechmanyotherareas.Stochasticgradientdescent(SGD)hasprovedtobeaneffectivewayoftrainingdeepwksSGDvariantssuchasmomentum(Sutskeveretal.2013)Adagrad(Duchietal.2011)h
7、avebeenusedtoachievestateoftheartperfmance.SGDoptimizestheparametersΘofthewksoastoProceedingsofthe32ndInternationalConferenceonMachineLearningLilleFrance2015.JMLR:Wigningthelattertermwouldleadtotheexplosiondescribedabove
8、.WithinthisframewkwhiteningthelayerinputsisexpensiveasitrequirescomputingthecovariancematrixCov[x]=Ex∈X[xxT]?E[x]E[x]TitsinversesquareroottoproducethewhitenedactivationsCov[x]?12(x?E[x])aswellasthederivativesofthesetrans
9、fmsfbackpropagation.Thismotivatesustoseekanalternativethatperfmsinputnmalizationinawaythatisdifferentiabledoesnotrequiretheanalysisoftheentiretrainingsetaftereveryparameterupdate.Someofthepreviousapproaches(e.g.(Lyuinthe
10、jointcaseregularizationwouldberequiredsincetheminibatchsizeislikelytobesmallerthanthenumberofactivationsbeingwhitenedresultinginsingularcovariancematrices.ConsideraminibatchBofsizem.Sincethenmalizationisappliedtoeachacti
11、vationindependentlyletusfocusonaparticularactivationx(k)omitkfclarity.WehavemvaluesofthisactivationintheminibatchB=x1...m.Letthenmalizedvaluesbe?x1...mtheirlineartransfmationsbey1...m.WerefertothetransfmBNγβ:x1...m→y1...
12、mastheBatchNmalizingTransfm.WepresenttheBNTransfminAlgithm1.Inthealgithm?isaconstantaddedtotheminibatchvariancefnumericalstability.TheBNtransfmcanbeaddedtoawktomanipulateanyactivation.Inthenotationy=BNγβ(x)weindicatethat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010-2016精選論文2015-1503.04069
- 2010-2016精選論文2016-shahriari-bayesopt-ieee-2016
- 2010-2016精選論文2013-1312.5602v1
- 2010-2016精選論文2014-d14-1162
- 2010-2016精選論文2013-wang_iccv13
- 2010-2016精選論文2014-1408.5882v2
- training an artificial neural network to discriminate between magnetizing inrush and internal faults
- 2010-2016精選論文2014-deepface-closing-the-gap-to-human-level-performance
- Training an artificial neural network to discriminate between magnetizing inrush and internal faults.pdf
- Training an artificial neural network to discriminate between magnetizing inrush and internal faults.pdf
- itil internal training
- 高中物理選修3-3(2010-2016年)高考題精選(含解析)
- 山東高考英語作文題及范文(2010-2016)
- 2010-2016年南京中考數(shù)學(xué)試題及答案
- 2010-2016年碩士研究生畢業(yè)情況
- 當(dāng)下中國電影的救贖性研究(2010-2016).pdf
- 2010-2016司考國際私法司考真題及解析
- 2010-2016生命科學(xué)技術(shù)學(xué)院獲獎情況
- 國產(chǎn)系列電影傳播效果研究(2010-2016年)_2129.pdf
- 2010-2016年考研英語二歷年真題及答案解析
評論
0/150
提交評論