版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、PlayingAtariwithDeepReinfcementLearningVolodymyrMnihKayKavukcuogluDavidSilverAlexGravesIoannisAntonoglouDaanWierstraMartinRiedmillerDeepMindTechnologiesvladkaydavidalex.gravesioannisdaanmartin.riedmiller@AbstractWepresen
2、tthefirstdeeplearningmodeltosuccessfullylearncontrolpoliciesdirectlyfromhighdimensionalsensyinputusingreinfcementlearning.ThemodelisaconvolutionalneuralwktrainedwithavariantofQlearningwhoseinputisrawpixelswhoseoutputisav
3、aluefunctionestimatingfuturerewards.WeapplyourmethodtosevenAtari2600gamesfromtheArcadeLearningEnvironmentwithnoadjustmentofthearchitecturelearningalgithm.Wefindthatitoutperfmsallpreviousapproachesonsixofthegamessurpasses
4、ahumanexpertonthreeofthem.1IntroductionLearningtocontrolagentsdirectlyfromhighdimensionalsensyinputslikevisionspeechisoneofthelongstingchallengesofreinfcementlearning(RL).MostsuccessfulRLapplicationsthatoperateonthesedom
5、ainshavereliedonhcraftedfeaturescombinedwithlinearvaluefunctionspolicyrepresentations.Clearlytheperfmanceofsuchsystemsheavilyreliesonthequalityofthefeaturerepresentation.Recentadvancesindeeplearninghavemadeitpossibletoex
6、tracthighlevelfeaturesfromrawsensydataleadingtobreakthroughsincomputervision[112216]speechrecognition[67].ThesemethodsutilisearangeofneuralwkarchitecturesincludingconvolutionalwksmultilayerperceptronsrestrictedBoltzmannm
7、achinesrecurrentneuralwkshaveexploitedbothsupervisedunsupervisedlearning.ItseemsnaturaltoaskwhethersimilartechniquescouldalsobebeneficialfRLwithsensydata.Howeverreinfcementlearningpresentsseveralchallengesfromadeeplearni
8、ngperspective.Firstlymostsuccessfuldeeplearningapplicationstodatehaverequiredlargeamountsofhlabelledtrainingdata.RLalgithmsontheotherhmustbeabletolearnfromascalarrewardsignalthatisfrequentlysparsenoisydelayed.Thedelaybet
9、weenactionsresultingrewardswhichcanbethoussoftimestepslongseemsparticularlydauntingwhencomparedtothedirectassociationbetweeninputstargetsfoundinsupervisedlearning.Anotherissueisthatmostdeeplearningalgithmsassumethedatasa
10、mplestobeindependentwhileinreinfcementlearningonetypicallyencounterssequencesofhighlycrelatedstates.FurthermeinRLthedatadistributionchangesasthealgithmlearnsnewbehaviourswhichcanbeproblematicfdeeplearningmethodsthatassum
11、eafixedunderlyingdistribution.ThispaperdemonstratesthataconvolutionalneuralwkcanovercomethesechallengestolearnsuccessfulcontrolpoliciesfromrawvideodataincomplexRLenvironments.ThewkistrainedwithavariantoftheQlearning[26]a
12、lgithmwithstochasticgradientdescenttoupdatetheweights.Toalleviatetheproblemsofcrelateddatanonstationarydistributionsweuse1arXiv:1312.5602v1[cs.LG]19Dec2013maximisingtheexpectedvalueofrγQ?(s?a?)Q?(sa)=Es?~E?rγmaxa?Q?(s?a?
13、)???sa?(1)ThebasicideabehindmanyreinfcementlearningalgithmsistoestimatetheactionvaluefunctionbyusingtheBellmanequationasaniterativeupdateQi1(sa)=E[rγmaxa?Qi(s?a?)|sa].Suchvalueiterationalgithmsconvergetotheoptimalactionv
14、aluefunctionQi→Q?asi→∞[23].Inpracticethisbasicapproachistotallyimpracticalbecausetheactionvaluefunctionisestimatedseparatelyfeachsequencewithoutanygeneralisation.Insteaditiscommontouseafunctionapproximattoestimatetheacti
15、onvaluefunctionQ(saθ)≈Q?(sa).Inthereinfcementlearningcommunitythisistypicallyalinearfunctionapproximatbutsometimesanonlinearfunctionapproximatisusedinsteadsuchasaneuralwk.Werefertoaneuralwkfunctionapproximatwithweightsθa
16、saQwk.AQwkcanbetrainedbyminimisingasequenceoflossfunctionsLi(θi)thatchangesateachiterationiLi(θi)=Esa~ρ()?(yi?Q(saθi))2?(2)whereyi=Es?~E[rγmaxa?Q(s?a?θi?1)|sa]isthetargetfiterationiρ(sa)isaprobabilitydistributionoversequ
17、encessactionsathatwerefertoasthebehaviourdistribution.Theparametersfromthepreviousiterationθi?1areheldfixedwhenoptimisingthelossfunctionLi(θi).Notethatthetargetsdependonthewkweightsthisisincontrastwiththetargetsusedfsupe
18、rvisedlearningwhicharefixedbefelearningbegins.Differentiatingthelossfunctionwithrespecttotheweightswearriveatthefollowinggradient?θiLi(θi)=Esa~ρ()s?~E??rγmaxa?Q(s?a?θi?1)?Q(saθi)??θiQ(saθi)?.(3)Ratherthancomputingthefull
19、expectationsintheabovegradientitisoftencomputationallyexpedienttooptimisethelossfunctionbystochasticgradientdescent.Iftheweightsareupdatedaftereverytimesteptheexpectationsarereplacedbysinglesamplesfromthebehaviourdistrib
20、utionρtheemulatErespectivelythenwearriveatthefamiliarQlearningalgithm[26].Notethatthisalgithmismodelfree:itsolvesthereinfcementlearningtaskdirectlyusingsamplesfromtheemulatEwithoutexplicitlyconstructinganestimateofE.Itis
21、alsooffpolicy:itlearnsaboutthegreedystrategya=maxaQ(saθ)whilefollowingabehaviourdistributionthatensuresadequateexplationofthestatespace.Inpracticethebehaviourdistributionisoftenselectedbyan?greedystrategythatfollowsthegr
22、eedystrategywithprobability1??saromactionwithprobability?.3RelatedWkPerhapsthebestknownsuccessstyofreinfcementlearningisTDgammonabackgammonplayingprogramwhichlearntentirelybyreinfcementlearningselfplayachievedasuperhuman
23、levelofplay[24].TDgammonusedamodelfreereinfcementlearningalgithmsimilartoQlearningapproximatedthevaluefunctionusingamultilayerperceptronwithonehiddenlayer1.HoweverearlyattemptstofollowuponTDgammonincludingapplicationsoft
24、hesamemethodtochessGocheckerswerelesssuccessful.ThisledtoawidespreadbeliefthattheTDgammonapproachwasaspecialcasethatonlywkedinbackgammonperhapsbecausethestochasticityinthedicerollshelpsexplethestatespacealsomakesthevalue
25、functionparticularlysmooth[19].FurthermeitwasshownthatcombiningmodelfreereinfcementlearningalgithmssuchasQlearningwithnonlinearfunctionapproximats[25]indeedwithoffpolicylearning[1]couldcausetheQwktodiverge.Subsequentlyth
26、emajityofwkinreinfcementlearningfocusedonlinearfunctionapproximatswithbetterconvergenceguarantees[25].1InfactTDGammonapproximatedthestatevaluefunctionV(s)ratherthantheactionvaluefunctionQ(sa)learntonpolicydirectlyfromthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010-2016精選論文2013-wang_iccv13
- 2010-2016精選論文2014-1408.5882v2
- 2010-2016精選論文2015-1503.04069
- 2010-2016精選論文2016-shahriari-bayesopt-ieee-2016
- 2010-2016精選論文2014-d14-1162
- 2010-2016精選論文2014-deepface-closing-the-gap-to-human-level-performance
- 2010-2016精選論文2015_batch_normalization_accelerating_deep_network_training_by_reducing_internal_covariate_shift
- 高中物理選修3-3(2010-2016年)高考題精選(含解析)
- 山東高考英語作文題及范文(2010-2016)
- 2010-2016年南京中考數(shù)學試題及答案
- 2010-2016年碩士研究生畢業(yè)情況
- 當下中國電影的救贖性研究(2010-2016).pdf
- 2010-2016司考國際私法司考真題及解析
- 2010-2016生命科學技術(shù)學院獲獎情況
- 國產(chǎn)系列電影傳播效果研究(2010-2016年)_2129.pdf
- 2010-2016年考研英語二歷年真題及答案解析
- 次北固山下-++中考古詩賞析要點解析++2010-2016
- 北京大學社會工作考研真題2010-2016
- 2010-2016年考研英語二歷年真題及答案解析(完整版)
- 新浪網(wǎng)2010-2016年性工作者媒介形象研究.pdf
評論
0/150
提交評論