概率論與數(shù)理統(tǒng)計學習心得_第1頁
已閱讀1頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、概率論與數(shù)理統(tǒng)計學習心得概率論與數(shù)理統(tǒng)計學習心得摘要:摘要:通過概率論與數(shù)理統(tǒng)計這門課的學習,我掌握了基本的概率論的知識,當然學習中也曾遇到過很多的問題。本文主要就概率論的發(fā)展歷史、我的學習心得和其在生活中的應用三個方面來闡述我對這門課的理解。關鍵詞:關鍵詞:概率論,數(shù)理統(tǒng)計,學習心得,發(fā)展歷史,應用。一、概率論與數(shù)理統(tǒng)計的發(fā)展歷史:一、概率論與數(shù)理統(tǒng)計的發(fā)展歷史:早在1654年,有一個賭徒向法國著名數(shù)學家帕斯卡挑戰(zhàn),給他出了一道題目:

2、甲乙兩個人賭博,他們兩人獲勝的機率相等,比賽規(guī)則是先勝三局者為贏家,贏家可以獲得100法郎的獎勵。比賽進行三局后,甲勝了兩局,乙勝了一局,這時由于某些原因中止了比賽,那么如何分配這100法郎才比較公平?用概率論的知識,不難得知,甲獲勝的概率為12(12)(12)=34,乙獲勝的概率為(12)(12)=14。所以甲的期望所得值為10034=75法郎,乙的期望所得值為25法郎。這個故事里出現(xiàn)了“期望”這個詞,數(shù)學期望由此而來。三年后,也就是

3、1657年,荷蘭著名的天文、物理兼數(shù)學家惠更斯企圖自己解決這一問題,結果寫成了《論機會游戲的計算》一書,這就是最早的概率論著作。在此期間,法國的費爾馬與帕斯卡也在相互通信中探討了隨機博弈現(xiàn)象中所出現(xiàn)的概率論的基本定理和法則惠更斯等人的工作建立了概率和數(shù)學期望等主要概念,找出了它們的基本性質和演算方法,從而塑造了概率論的雛形。18世紀是概率論的正式形成和發(fā)展時期。1713年,貝努利的名著《推想的藝術》發(fā)表。在這部著作中,貝努利明確指出了概

4、率論最重要的定律之一“大數(shù)定律”,并且給出了證明,這使以往建立在經(jīng)驗之上的頻率穩(wěn)定性推測理論化了,從此概率論從對特殊問題的求解,發(fā)展到了一般的理論概括。繼貝努利之后,法國數(shù)學家棣謨佛于1781年發(fā)表了《機遇原理》。書中提出了概率乘法法則,以及“正態(tài)分布”的概念,為概率論的“中心極限定理”的建立奠定了基礎。1706年法國數(shù)學家蒲豐的《偶然性的算術試驗》完成,他把概率和幾何結合起來,開始了幾何概率的研究,他提出的“蒲豐問題”就是采取概率的方

5、法來求圓周率π的嘗試。通過貝努利等人的努力,使數(shù)學方法有效地應用于概率研究之中,使概率論成為數(shù)學的一個分支。試驗的任一隨機事件的概率也就完全確定了。所以我們只須求出隨機變量X的分布P(X∈B)。就對隨機試驗進行了全面的刻畫。2.在學習“概率論”過程中對于引入概念的內(nèi)涵和相互間的聯(lián)系和差異要仔細推敲,例如隨機變量概念的內(nèi)涵有哪些意義:它是一個從樣本空間到實軸的單值實函數(shù)X(w),但它不同于一般的函數(shù),首先它的定義域是樣本空間,不同隨機試驗

6、有不同的樣本空間。3.概率論中也有許多習題,在解題過程中不要為解題而解題,而應理解題目所涉及的概念及解題的目的,至于具體計算中的某些技巧基本上在高等數(shù)學中都已學過。因此概率論學習的關鍵不在于做許多習題,而要把精力放在理解不同題型涉及的概念及解題的思路上去。這樣往往能“事半功倍”。三、概率論與數(shù)理統(tǒng)計在生活中的應用:三、概率論與數(shù)理統(tǒng)計在生活中的應用:以下舉幾個有趣的實例來說明概率論與統(tǒng)計在生活中的應用。一、首先來看一個經(jīng)典的生日概率問題

7、:1.團體有一群人,我絕對可以肯定至少有2人生日相同,這群人人數(shù)至少要多少?(假設一年是365天)對于這個問題,某一團體中,絕對肯定至少有2人生日相同,即為必然事件,p=1。由抽屜原理可知,這群人至少要有366人?;蛘哌@樣想,若是365人,則有可能這365人出生在一年的365天里,所以至少是366人。2.如果某個隨機而遇的團體有50人以上,我敢打賄,這個團體幾乎可以肯定有生日相同的兩個人,你相信嗎?要解決這個概率問題,我們首先來計算一下

8、,50個人生日的搭配一共有多少種可能情況。第一個人生日,可以是一年中任何一天,一共有365種可能情況,而第二、第三及其它所有人生日也都有365種,這樣50個人共有種可能搭配。如果50人的生日無一相36550同,那么生日搭配可能情況就少得多了。第一個人有365種可能,第二人因不能與第一個生日相同,只有364種可能,依次類推,如50人生日無一相同,其生日搭配情況只有365364363317316。那么50人生日無一相同的概率僅為3%,所以至

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論