版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、全品高考復習方案數(shù)學(理科)BS課時作業(yè)(六十七)1解:(1)∵ρ=4sin,(θ-π3)∴ρ=4,(sinθcosπ3-cosθsinπ3)∴ρ2=2ρsinθ-2ρcosθ,3∴曲線C的直角坐標方程為x2+y2+2x-2y=0.3(2)曲線C的直角坐標方程可化為(x+)2+(y-1)2=4,3∴曲線C是圓心為(-,1),半徑為2的圓3∵點Q的直角坐標是(cosφ,sinφ),∴點Q在圓O:x2+y2=1上,∴|PQ|≤|OC|+1+
2、2=5,即|PQ|的最大值為5.2解:(1)因為x=ρcosθ,y=ρsinθ,所以C1的極坐標方程為ρcosθ=-2C2的極坐標方程為ρ2-2ρcosθ-4ρsinθ+4=0.(2)將θ=代入ρ2-2ρcosθ-4ρsinθ+4=0,π4得ρ2-3ρ+4=0,得ρ1=2,ρ2=,所以|MN|=.2222因為C2的半徑為1,則△C2MN的面積為1sin45=.122123解:(1)∵直線l的傾斜角α=,∴直線l上的點的極角θ=或θ=,代
3、入3π43π47π4圓E的極坐標方程ρ=4sinθ,得ρ=2或ρ=-2(舍去),22∴直線l與圓E的交點A的極坐標為.(22,3π4)(2)由(1)知線段OA的中點M的極坐標為.(2,3π4)∴M的直角坐標為(-1,1),∵圓E的極坐標方程為ρ=4sinθ,∴圓E的直角坐標方程為x2+y2-4y=0.設直線m的參數(shù)方程為(t為參數(shù)),x=-1+tcosα,y=1+tsinα)代入x2+y2-4y=0得t2-2t(sinα+cosα)-2
4、=0,Δ=4(sinα+cosα)2+80.設B,C兩點對應的參數(shù)分別為t1,t2,則t1+t2=2(sinα+cosα),t1t2=-2,即t1與t2異號∴||MB|-|MC||=||t1|-|t2||=|t1+t2|=2|sinα+cosα|=2,2|sin(α+π4)|∴||MB|-|MC||max=2,此時直線m的傾斜角α=.2π44解:(1)由題意知,直線l的極坐標方程為ρcosθ+=0,π6化簡得ρcosθ-ρsinθ=0,
5、3212則直線l的直角坐標方程是x-y=0.3由于動拋物線C的頂點坐標為(+3cosθ,1+3sinθ),3∴軌跡E的參數(shù)方程是(θ為參數(shù))x=3+3cosθ,y=1+3sinθ)(2)由(1)可得,曲線E的普通方程為(x-)2+(y-1)2=9,曲線E是以(,1)為圓心,33曲線C2的直角坐標方程為y-2x-4=0.2(2)由題意可知|PQ|的最小值即為P到直線2x-y+4=0的距離的最小值,2∵d==,|2cosφ-2sinφ+42
6、|5|22cos(φ+π4)+42|5∴|PQ|的最小值dmin=.21052解:(1)曲線C的普通方程為(x-1)2+(y-1)2=2,直線l的直角坐標方程為x+y=0,圓心C到直線l的距離d===r,所以直線l與曲線C相切|1+1|12+122(2)由已知可得,圓心C到直線的距離d=≤,|1+1-m|12+12322解得-1≤m≤5.3解:(1)消去參數(shù)得直線l的普通方程為x+y-=0,33由ρ=2sinθ得圓C的直角坐標方程為x2
7、+y2-2y=0.33(2)由直線l的參數(shù)方程可知直線l過點P,把直線l的參數(shù)方程代入圓C的直角坐標方程x2+y2-2y=0,3得+=3,(1-12t)2(32t-3)2化簡得t2-4t+1=0,Δ=120,設A,B兩點對應的參數(shù)分別為t1,t2,則t1+t2=4,t1t2=1,所以|PA|+|PB|=|t1|+|t2|=t1+t2=4.4解:(1)由已知可得直線l的參數(shù)方程為(t為參數(shù))x=32+tcosα,y=32+tsinα)(2
8、)將直線的參數(shù)方程代入x2+y2=1,得t2+(cosα+3sinα)t+2=0,由Δ0,有3,|sin(α+π6)|63設M,N兩點對應的參數(shù)分別為t1,t2,則t1+t2=-(cosα+3sinα),t1t2=20,3∴+=+====1|PM|1|PN|1|t1|1|t2||1t1+1t2||t1+t2t1t2||3cosα+3sinα|23∈(,]|sin(α+π6)|235解:(1)點O(0,0),A,B對應的直角坐標分別為O(
9、0,0),A(0,(2,π2)(22,π4)2),B(2,2),則過點O,A,B的圓的直角坐標方程為x2+y2-2x-2y=0,又因為代入可求得經(jīng)過點O,A,B的圓C1的極坐標方程為ρ=2cos.x=ρcosθ,y=ρsinθ,)2(θ-π4)(2)圓C2:(θ是參數(shù))對應的普通方程為(x+1)2+(y+1)2=a2,因為x=-1+acosθ,y=-1+asinθ)圓C1與圓C2外切,所以+|a|=2,解得a=.2226解:(1)∵ρ=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論