版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、南京航空航天大學(xué)碩士學(xué)位論文基于神經(jīng)網(wǎng)絡(luò)的混合模型軌道預(yù)報(bào)方法研究姓名:董澤政申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):導(dǎo)航制導(dǎo)與控制指導(dǎo)教師:徐波2010-12基于神經(jīng)網(wǎng)絡(luò)的混合模型軌道預(yù)報(bào)方法研究 II Abstract Satellite orbit predic
2、tion is a process to calculate the motion state in certain duration, it is essential for orbit design, satellite tracking and GPS positioning. The traditional method for prediction is based on Newton second law, which ne
3、eds highly precise dynamical models. As the space environment is complex and dynamic variation, it is doomed to take a long time and much works to establish the dynamical models of satellite and even more time and works
4、to consummate it. So the accurancy of orbit perdiction based on dynamical models is very hard to improved. In this paper a method of satellite orbit forecasting based on Artificial Neural Network (ANN) is proposed, the h
5、ybrid prediction model consists of ANN and dynamical models (DMM). In order to acquire more highly precise ephemeris, during the training phase, ANN tries to approach the difference between the IGS ephemeris and the DMM
6、predicting product.. The main study in this paper are followed: 1.The highly accurancy tansition process between the GCRS(Geocentric Celestial Reference System) and the ITRS(International Terrestrial Reference System), i
7、ncluding the Precession-nutation model, the Earth-Rotation model and the EOP( Earth Orientation Parameters); 2.The strategy of orbit predition with high precision, consisted of analysis for dynamical models and research
8、on the numerical integrators; 3.The strategy of orbit determination, preliminary orbit determination and parameters estimation algrithms are needed in this part; 4.The training algrithm and method of improving generaliza
9、tion ability; 5.Hybrid model sysytem design and the predtion strategies. We choose GPS satellites as the researching object, first we carry out the predition of GPS satellites, and then the short duration and long durati
10、on characteristics of prediction errors were explored, and based on these, we obtained two predtion strategies for the Hyrbrid Model The test results shows that the 24h prediction error of Hyrbrid Model is less than 1 me
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于神經(jīng)網(wǎng)絡(luò)方法的kp預(yù)報(bào)模型
- 基于深度神經(jīng)網(wǎng)絡(luò)補(bǔ)償模型的軌道預(yù)報(bào)技術(shù).pdf
- 基于人工神經(jīng)網(wǎng)絡(luò)的洪水預(yù)報(bào)模型研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的轉(zhuǎn)爐冶煉終點(diǎn)預(yù)報(bào)模型——硫預(yù)報(bào)模型.pdf
- 基于人工神經(jīng)網(wǎng)絡(luò)的灌區(qū)灌溉預(yù)報(bào)模型.pdf
- 短期降水預(yù)報(bào)BP神經(jīng)網(wǎng)絡(luò)預(yù)報(bào)方法研究.pdf
- 基于RBF神經(jīng)網(wǎng)絡(luò)多模型的青霉素濃度預(yù)報(bào)方法研究.pdf
- 基于小波神經(jīng)網(wǎng)絡(luò)的高爐爐溫預(yù)報(bào)模型研究.pdf
- 19129.基于神經(jīng)網(wǎng)絡(luò)的水文預(yù)報(bào)方法研究
- 基于混合神經(jīng)網(wǎng)絡(luò)模型的國(guó)別風(fēng)險(xiǎn)評(píng)估研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的鐵水預(yù)處理脫硫預(yù)報(bào)模型.pdf
- 船舶操縱預(yù)報(bào)的神經(jīng)網(wǎng)絡(luò)方法.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的熱軋機(jī)組軋制力預(yù)報(bào)模型研究.pdf
- 基于改進(jìn)的神經(jīng)網(wǎng)絡(luò)冰凌預(yù)報(bào)模型及其GUI設(shè)計(jì).pdf
- 13274.基于小波神經(jīng)網(wǎng)絡(luò)的水汽預(yù)報(bào)方法研究
- 基于神經(jīng)網(wǎng)絡(luò)的沙塵暴預(yù)報(bào)模型的研究與應(yīng)用.pdf
- 基于GA-BP神經(jīng)網(wǎng)絡(luò)漏鋼預(yù)報(bào)模型研究.pdf
- 平整機(jī)軋制力的神經(jīng)網(wǎng)絡(luò)預(yù)報(bào)模型研究.pdf
- 基于BP神經(jīng)網(wǎng)絡(luò)的航危霧霾預(yù)報(bào)模型研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的軋制力預(yù)報(bào)研究.pdf
評(píng)論
0/150
提交評(píng)論