版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、安徽大學(xué)碩士學(xué)位論文二階矩有限時(shí)弱鞅和相依序列的不等式及強(qiáng)大數(shù)律姓名:趙婷申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):概率論與數(shù)理統(tǒng)計(jì)指導(dǎo)教師:胡舒合2010-05Abstract Abstract The limit theorem is the central subject of the probability limit theory. We use probability inequality in order to obtain a lot o
2、f perfect results. In order to study random variable convergence inequality, a lot of inequalities has already been given by many scholars. Hájek and Rényi (1955) gave a important inequality named Hájek-R&
3、#233;nyi inequality. Many scholars have improved them and obtained a class of Hájek-Rényi-type inequality and their application. Recently, in 2000, Prakasa Rao (2000) proved the associated random variables conv
4、ergence by using the Hájek-Rényi-type inequality. Sung (2008) further generalized Hájek-Rényi-type inequality, gave a more extensive application which was better than the results of Prakasa Rao
5、 (2000). But there were several mistakes in the proof of main theorems. Chow (1960) have proved the maximal inequality for submartingale which contains Hájek-Rényi inequality. Christofides (2000) have given tha
6、t maximal inequality for demimartingale and demisubmartingale, Wang (2004) have proved the Doob inequality for PA sequence and demimartingale. Recently, Hu et al. (2009) have obtained the Hájek-Rényi-type inequ
7、ality and strong growth rates for demimartingale and PA sequence which were better than the results of Sung (2008). In addition, they pointed out some mistakes in the paper of Sung (2008). The strong law of large numbers
8、 are used to give under the moment condition II) ( 1 r ? . In this paper, firstly, the inequalities and growth rates for demimartingale and PA sequences on finite frist moment(0<r<1)are obtained. Secondly, we begin
9、 with probability inequality for a class of random variable sequences, get a Hájek-Rényi -type inequality for random variable sequences and the almost surely convergence properties and growth rate for partial s
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 弱鞅和三類相依序列的概率不等式及極限定理.pdf
- 強(qiáng)正相依序列、混合序列的不等式及收斂速度.pdf
- 弱鞅和其他隨機(jī)序列的不等式及其應(yīng)用.pdf
- ND混合序列的強(qiáng)大數(shù)律和弱大數(shù)律.pdf
- 畢竟鞅和N-弱鞅的不等式及極限定理.pdf
- 弱(下)鞅的概率不等式及其應(yīng)用.pdf
- 若干條件弱鞅的概率不等式及極限定理.pdf
- 關(guān)于弱鞅的不等式及其強(qiáng)增長(zhǎng)速度.pdf
- 7275.鞅的雙φ不等式
- 相依序列的重對(duì)數(shù)律及幾乎處處收斂性.pdf
- Lorentz-Orlicz鞅空間的內(nèi)插和B值擬鞅不等式.pdf
- 20838.鞅的一些不等式
- Bahr-Esseen型矩不等式及應(yīng)用.pdf
- 關(guān)于凹函數(shù)的Φ—期望鞅不等式的研究.pdf
- 二階非線性微分、差分方程的Liapunov型不等式與振動(dòng)性.pdf
- 不等式及不等式的性質(zhì)復(fù)習(xí)題
- Hardy-Lorentz鞅空間的對(duì)偶和John-Nirenberg不等式.pdf
- 不等式.均值不等式的應(yīng)用
- 不同分布的NA序列加權(quán)和的強(qiáng)大數(shù)律.pdf
- 若干積分不等式和差分不等式的推廣.pdf
評(píng)論
0/150
提交評(píng)論