一類矩陣方程約束最小二乘解的迭代解法.pdf_第1頁
已閱讀1頁,還剩68頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、本文系統(tǒng)地研究了用迭代法求解矩陣方程AX=B的幾類最小二乘約束解及最佳逼近的問題.具體描述如下: 問題Ⅰ給定A∈Rm×n,B∈Rm×n,求X∈S()Rn×n,使‖AX-B‖=min. 問題Ⅱ設(shè)問題Ⅱ的解集合為SE,給定X0∈Rn×n,求X∈SE,使‖^X-X0‖=minX∈SB‖X-X0‖. 其中‖.‖為Frobenius范數(shù),S為Rn×n中滿足某約束條件的矩陣集合,本碩士論文主要研究了中心對(duì)稱矩陣、中心反對(duì)稱矩

2、陣、自反矩陣、反自反矩陣、雙對(duì)稱矩陣、對(duì)稱次反對(duì)稱矩陣、對(duì)稱正交對(duì)稱矩陣、對(duì)稱正交反對(duì)稱矩陣. 本文主要研究結(jié)果如下: 1.對(duì)于問題Ⅰ,很多文獻(xiàn)都利用傳統(tǒng)的矩陣分解方法已有了很好的結(jié)果.本文利用迭代法結(jié)合法方程變換的方法來求大型線性矩陣方程AX=B的中心對(duì)稱、中心反對(duì)稱、自反矩陣、反自反矩陣、雙對(duì)稱、對(duì)稱次反矩陣、對(duì)稱正交對(duì)稱、對(duì)稱正交反對(duì)稱最小二乘解,同樣也成功地解決了這些問題. 2.對(duì)于問題Ⅱ,將求解它等價(jià)轉(zhuǎn)

3、化為求解一個(gè)新的相容矩陣方程的極小范數(shù)最小二乘解的問題.在已求得問題Ⅰ的解的基礎(chǔ)上同樣利用相應(yīng)的迭代法可先求出該方程的極小范數(shù)最小二乘解,最后得出問題Ⅱ的解. 本文所構(gòu)造的迭代法的優(yōu)點(diǎn)在于先利用法方程變換將求矩陣方程的最小二乘解轉(zhuǎn)化為求一個(gè)相容矩陣方程的解的問題,再利用迭代法對(duì)于任意給定的初始矩陣進(jìn)行迭代,均可在有限步內(nèi)迭代出所求問題的一個(gè)解;可將問題Ⅱ轉(zhuǎn)化為求新方程的極小范數(shù)解的問題,同樣用迭代法求解,從而系統(tǒng)且全面地解決了問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論