加權Toeplitz最小二乘問題的預處理算法.pdf_第1頁
已閱讀1頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、由Toeplitz矩陣作為系數(shù)的線性方程組出現(xiàn)在許多不同的應用中.目前已經有許多有效的計算方法用于求解這類含有Toeplitz結構的問題中,但這些方法對于含有Toeplitz矩陣結構的加權最小二乘問題并不適用.本文主要考慮加權Toeplitz最小二乘問題的預處理迭代算法.在圖像還原和非線性圖像恢復中都會遇到這類最小二乘問題.在實際問題中,矩陣的規(guī)模通常會很大,由于加權Toeplitz最小二乘問題本身的特點,其正規(guī)方程的系數(shù)矩陣的置換秩會

2、很大,在求解這類問題時,現(xiàn)有的預處理子的效果并不是理想,所以需要尋找新的預處理子,改變原系數(shù)矩陣的條件數(shù)和譜分布,從而提高迭代算法的收斂速度.如何構造有效的預處理子是目前數(shù)值代數(shù)領域的熱門研究課題.
   本文首先將加權Toeplitz最小二乘問題轉化成一個等價的鞍點問題,然后研究基于對稱與反對稱分裂的預處理子的構造和性質.通過引入不同的參數(shù)使得算法具有更多的靈活性,并且通過選取最優(yōu)參數(shù)使得算法具有更快的收斂速度.同時本文還對預

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論