版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、互補(bǔ)問題是運(yùn)籌學(xué)與計算數(shù)學(xué)的一個交叉研究領(lǐng)域,它與非線性規(guī)劃、極大極小、對策論、不動點(diǎn)理論等分支有緊密聯(lián)系,在力學(xué)、工程、經(jīng)濟(jì)、交通等許多實(shí)際部門有廣泛的應(yīng)用.這使互補(bǔ)問題成為非線性科學(xué)和計算科學(xué)研究的一個熱點(diǎn)問題,求解互補(bǔ)問題的算法的研究也取得了很多成果.本文研究互補(bǔ)問題的數(shù)值方法. 緒論部分,概述了互補(bǔ)問題的各種形式以及在工程、經(jīng)濟(jì)中的應(yīng)用,同時分類介紹了求解互補(bǔ)問題的幾種主要算法.最后,介紹了本文的內(nèi)容安排. 第一
2、章將P0-函數(shù)非線性互補(bǔ)問題(NCP(F))轉(zhuǎn)化為求解一個等價的非線性方隉組,利用光滑化的Fischer-Burmeister函數(shù)構(gòu)造與NCP(F')等價的光滑方程組.在比基礎(chǔ)上建立求解NCP(F)的參數(shù)微分法.數(shù)值實(shí)驗(yàn)結(jié)果進(jìn)一步驗(yàn)證這一方法的可廳性和有效性. 第二章將求解互補(bǔ)問題(CP(F))轉(zhuǎn)化為求解一個等價的不動點(diǎn)方程.利用不動點(diǎn)方程構(gòu)造迭代公式并將迭代公式光滑化求解,進(jìn)而提出求解互補(bǔ)問題的逐點(diǎn)逼近算法,從理論上證明了算法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 求解互補(bǔ)問題的數(shù)值方法的一些研究.pdf
- 有關(guān)線性互補(bǔ)問題的一些研究.pdf
- 求解大規(guī)模非對稱矩陣特征值問題的一些數(shù)值算法.pdf
- 一些反問題的數(shù)值解法研究.pdf
- 求解變分不等式的一些新算法.pdf
- 一種求解互補(bǔ)問題的光滑算法.pdf
- 第23講 一些特殊類型問題的求解
- 一些相補(bǔ)問題的理論與算法研究.pdf
- 關(guān)于互補(bǔ)問題半光滑漸近牛頓法的一些研究.pdf
- 求解互補(bǔ)問題的光滑牛頓算法.pdf
- 一些包含數(shù)論函數(shù)的方程求解.pdf
- 高振蕩問題及一些高效算法.pdf
- 第23講 一些特殊類型問題的求解(學(xué)生版)
- 求解非線性互補(bǔ)問題的一類光滑牛頓算法.pdf
- 求解特征值互補(bǔ)問題的ABS算法.pdf
- 一類求解非線性互補(bǔ)問題的廣義Newton算法.pdf
- 關(guān)于互補(bǔ)問題數(shù)值算法的若干研究.pdf
- 非線性互補(bǔ)問題數(shù)值算法研究.pdf
- 對背包問題的一些研究
- 力覺繪制算法的一些研究.pdf
評論
0/150
提交評論