外文翻譯--在機器人足球賽中多智能體系統(tǒng)的發(fā)展_第1頁
已閱讀1頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  中文5200字,英文2900單詞</p><p>  2013屆本科畢業(yè)設(shè)計(論文)外文</p><p><b>  文獻翻譯</b></p><p>  學 院 電氣與自動化工程學院 </p><p>  專 業(yè): Y自動化

2、 </p><p>  姓 名: </p><p>  學 號: </p><p>  外文出處:Robotics and Automation,1997. </p><p>  Proceedings.,1997 I

3、nternational Conference Engineering on. IEEE,1997,1:626-631 </p><p>  附 件:1.外文資料翻譯譯文;2.外文原文</p><p>  附件1:外文資料翻譯論文</p><p>  在機器人足球賽中多智能體系統(tǒng)的發(fā)展</p><p><

4、b>  一、介紹</b></p><p>  隨著現(xiàn)代工業(yè)的發(fā)展,應用機器人的需要在增加。尤其是移動機器人在工業(yè)和研究領(lǐng)域中逐漸地擴大了其應用。對移動機器人的研究主要集中在單一移動機器人。但是,隨著機器人執(zhí)行復雜任務(wù)的增加,多智能體系統(tǒng)的發(fā)展是必須的。</p><p>  許多學者研究多智能體系統(tǒng)。一般來說,多智能體系統(tǒng)定義為超過2個的機器人,通過協(xié)作完成給定任務(wù)的系統(tǒng)。

5、整個系統(tǒng)相對于單一機器人系統(tǒng)有許多不同特點。首先,機器人所在的環(huán)境是動態(tài)的。在多智能體系統(tǒng)中,機器人本身構(gòu)成了動態(tài)環(huán)境,因為每一個機器人應該識別出其余的機器人為移動障礙物。早些的對于移動機器人的研究都是假定環(huán)境是靜態(tài)的,甚至是單一移動機器人的研究。第二,由于是通過協(xié)作完成既定任務(wù)的,很有必要對于機器人的角色做整個系統(tǒng)規(guī)劃。多智能體系統(tǒng)的一個明顯特征是協(xié)作,舉例來說,2個機器人搬東西。為了相互協(xié)作,機器人位置的改變必須要預測。有一些方法可

6、以知道機器人的位置。舉個例子,機器人相互通訊自己的位置,或者管理員探測到機器人的位置并傳遞給每個機器人。這是一個與通訊有關(guān)的問題。第三,系統(tǒng)的每一部分,例如機器人、管理員、傳感器、通訊設(shè)備必須正常,因為他們將會影響整個系統(tǒng)的運行,并且必須采用合適的結(jié)構(gòu)。</p><p>  機器人足球賽對于研究多智能體系統(tǒng)是一個讓人感興趣的領(lǐng)域。足球機器人必須一起工作,這就是一種協(xié)作。而且,對于本方的機器人或者是對手機器人,他們

7、都是在可以預測的和不可預測的動態(tài)環(huán)境中進行比賽。主要的目標是在對方機器人參與的情況下。盡可能多的把足球踢到對方的球門中,當然對方的機器人也有相同的目的。因此,基于態(tài)勢,本方機器人決定將要采取的行動進攻或防守,如何協(xié)作等等。在這點上,系統(tǒng)需要實時感知,快速決策和采取行動。這些與系統(tǒng)結(jié)構(gòu)和算法有關(guān)。如下所述,機器人足球賽包含有許多多智能體系統(tǒng)的特征,很適合(人工智能)的應用。</p><p>  機器人足球賽的一個優(yōu)

8、點是對于不同系統(tǒng)的直接比較。許多足球機器人系統(tǒng)參與了一些競賽。我們參加了在朝鮮大田舉行的MIROSOT96(機器人微型組足球賽)。機器人微型組足球賽有許多規(guī)則。規(guī)則詳細描述了足球賽的規(guī)范。場地是正方形的,長130厘米,寬90厘米。足球是橙色的高爾夫球。機器人的尺寸限制在7.5*7.5*7.5厘米內(nèi)。每個隊包含三個機器人。我們的目的就是制作有三個機器人的足球機器人系統(tǒng)。</p><p>  本文中,我們闡述了在建立

9、整個系統(tǒng)需要考慮的一些因素。首先,因為系統(tǒng)結(jié)構(gòu)很重要,我們在分析多智能體系統(tǒng)的基礎(chǔ)上采用了在線的集中式系統(tǒng)。第二,整個系統(tǒng)可以分成三部分機器人,通訊和視覺設(shè)備。我們描述了每一部分的說明和采用他們的理由。這將會對以后的更進一步提高有所幫助。</p><p>  文章的以下內(nèi)容是這樣安排的。第二部分給出了一些系統(tǒng)結(jié)構(gòu)的研究和我們選擇的足球機器人系統(tǒng)結(jié)構(gòu)。第三部分給出了執(zhí)行硬件的具體說明,尤其是微型機器人。第四部分介紹

10、了機器人足球賽的協(xié)作和路徑規(guī)劃算法。第五部分是結(jié)論和將來的研究工作。</p><p>  二、多智能體系統(tǒng)的分類和足球機器人系統(tǒng)的選擇</p><p>  這個主題的研究是與Arai的工作相關(guān)的。我們基于兩個標準對多智能系統(tǒng)進行分類。一個是從誰決策和命令考慮分為集中式分散式,另一個從什么時候系統(tǒng)制定計劃考慮分為在線離線。</p><p>  在集中式系統(tǒng)中,管理員把

11、所有的有用數(shù)據(jù)合成,計劃所有機器人的行為并作出命令。由于管理員同時考慮了所有的機器人,系統(tǒng)將會優(yōu)化所有機器人的行動。但是隨著機器人數(shù)目的增加,管理員需要更多的計算。如果管理員發(fā)生錯誤,機器人將沒能力進行更正。</p><p>  在分布式系統(tǒng)中,每個機器人從自身的傳感器和別的機器人獲得信息,進行規(guī)劃。在系統(tǒng)中,當機器人數(shù)目增加時,沒有計算負載的大幅度增加。即使一個機器人出故障,別的機器人還可以工作的很好。但是系統(tǒng)

12、不能保證所有機器人行動的優(yōu)化。</p><p>  離線系統(tǒng)意味著所有的計劃在機器人工作之前就已經(jīng)制定好。因為沒有時間和計算力的限制,系統(tǒng)整體是優(yōu)化的。但是由于系統(tǒng)是假定的靜態(tài)環(huán)境,在環(huán)境發(fā)生微小變化時,系統(tǒng)是非魯棒的。在實際環(huán)境中,系統(tǒng)會隨著一些變化發(fā)生故障。</p><p>  在線系統(tǒng)意味著實時規(guī)劃。它對于動態(tài)環(huán)境是魯棒的。但它需要強大的計算能力和有效的算法。</p>

13、<p>  在大量的研究中,以上的兩種分類是相互聯(lián)系的。我們在表中進行了總結(jié)。</p><p><b>  表1多智能體的分類</b></p><p>  在MIROSOT96中,對機器人的尺寸進行了限制。因此,使一個機器人具有強大計算力是困難的。同時,決定一個機器人必須的裝備是重要的?;旧?,一個機器人必須配備激勵和通訊模塊。在考慮了機器人空間大小的情況下

14、,可以選擇和應用額外的設(shè)備。足球賽需要機器人位置的全局信息。因此,我們采用集中式系統(tǒng)。從路徑規(guī)劃時間來看,我們采用了在線系統(tǒng)。足球賽有快速變化的特點,需要實時感知,要求迅速的行為和決策。采用在線系統(tǒng)是合理的。</p><p>  在集中式在線系統(tǒng)中,管理員獲得整個環(huán)境和機器人的所有有用信息。同時,管理員應該實時規(guī)劃所有機器人的路徑。這要求快速的計算能力。為了減小管理員的負載,我們選擇了模塊系統(tǒng),它把主要的規(guī)劃和執(zhí)

15、行進行了分離。這在某些方面與Shakey[15]和Firby[16]的工作相似。在我們的足球機器人系統(tǒng)中,在某個策略中,管理員制定整個機器人的規(guī)劃。接著,管理員把下一步理想的位置信息傳遞給每個機器人。每個機器人獲得理想的位置信息并執(zhí)行控制算法來進行位置和速度控制。同時,每個機器人把自身獲得的數(shù)據(jù)和理想位置數(shù)據(jù)融合成它自身控制環(huán)的理想輸入。這樣的話,一個機器人必須擁有某種邏輯:具有“大腦”功能。因此,我們的機器人配置有微處理器。在這種結(jié)構(gòu)

16、中,系統(tǒng)分離出計算負載。圖1表示我們足球機器人系統(tǒng)的功能圖。由于管理員得到球和機器人的位置信息,系統(tǒng)將不需要雙向通訊。管理員僅僅需要把命令傳遞到每個機器人。在雙向通訊的情況下,需要傳送和接受命令的邏輯及其優(yōu)先權(quán)。它可能會增加在管理員和機器人之間的通訊系統(tǒng)的復雜性。</p><p>  圖1足球機器人系統(tǒng)的組成</p><p><b>  三、系統(tǒng)運行</b></

17、p><p>  系統(tǒng)由三部分組成:管理員,視覺系統(tǒng)和5個機器人。管理員是一臺奔騰處理器的PC機,它將進行實時規(guī)劃,視覺系統(tǒng)有兩個攝像機和一個具有DSP和內(nèi)存的圖像處理板,攝像機分別有紅色和藍色的過濾器。一個機器人有一個CPU,通訊模塊,IR傳感器,電機等。這三部分是相互聯(lián)系的。下面的章節(jié)將進行詳細描述。</p><p>  1.單個機器人的配置</p><p>  一個

18、機器人由機械裝置,CPU主板,通訊(接收)模塊和傳感器主板組成。它的尺寸在7.5*7.5*7.5厘米內(nèi)。</p><p>  機器人的機械裝置有兩個電機、編碼器、齒輪傳動裝置、輪子、撥球裝置和一個機架。機架的設(shè)計必須整體緊密結(jié)合。在選擇電機和齒輪傳動裝置的時候,需要考慮操作電壓,內(nèi)部耐力和機械時間常數(shù)。它的操作電壓是6v。傳動裝置的變形比為1:41。輪子的直徑是32mm。電機在空載下的速度為15200r/min。

19、可以計算出機器人的空載速度大約是62cm/sec。在實際中,我們可測量出機器人的最大速度是40cm/sec。兩臺電機是分別由主板上的CPU控制的。編碼器每一轉(zhuǎn)產(chǎn)生16個脈沖。</p><p>  2. CPU主板和傳感器主板</p><p>  在CPU主板上進行數(shù)據(jù)處理和電機控制。CPU主板有兩個尺寸為7.5cm*6.0cm一樣大小的PCB。我們選擇80C196KC作為機器人的CPU。它

20、的基本行為就是根據(jù)來自于管理員通過通訊模塊的數(shù)據(jù)進行控制電機。它還融合來自管理員和它自身傳感器的數(shù)據(jù)。80C196KC有三個PWM用來控制電機,8個信道的A/D的轉(zhuǎn)化器,用于接收自身傳感器的數(shù)據(jù)。電機驅(qū)動是TC 4428,雙重高速MOSFET驅(qū)動器。在空間緊湊的環(huán)境中,我們應用EPLD(可擦寫編程邏輯裝置)進行編碼計算,地址解碼和某些邏輯功能。</p><p>  如圖2的a中所示,在機器人中,三個LEDs在CP

21、U主板上部。三個LEDs排列成一個等邊三角形。因為LED是整個框架中最耀眼的部分,因此視覺系統(tǒng)可以很容易地探測機器人的位置和旋轉(zhuǎn)。位于三角形中央的剩余的LED給管理員傳遞信息。啟動LED意味著一個機器人利用自己的傳感裝置探測到球。</p><p>  在傳感器主板中,4對IR傳感器組成了發(fā)送和接收裝置,其位置是固定的。在圖b)中,一對位于較高的位置來區(qū)別機器人和球。它僅僅能探測到球。另外三個位于較低的位置。它們可

22、以探測球和機器人。CPU可以識辯出它自己傳感器探測到的障礙——球和機器人。因此傳感器主板在機器人的前端,它能在機器人前面進行區(qū)域查找。</p><p><b>  3.通訊</b></p><p>  從管理員到機器人,我們采用單向通訊。一般為了分享更多的信息,雙向通訊比較有利。但是這將會需要更大的空間和增大機器人和管理員執(zhí)行的任務(wù)的復雜性。在我們的系統(tǒng)中,我們把視覺

23、系統(tǒng)作為全局監(jiān)測器。對于機器人來說不需要把它的數(shù)據(jù)傳送給管理員,因此我們采用了單向通訊。</p><p>  圖2 CPU 主板和傳感器主板</p><p>  用于機器人位置和旋轉(zhuǎn)的LEDs在CPU主板中的位置</p><p>  在傳感器主板中的IR傳感器的位置</p><p>  圖3數(shù)字化編碼數(shù)據(jù)形式圖</p><

24、p>  圖4通訊信號組成示意圖</p><p>  有兩種常用的通訊方法IR和R/F。IR通訊有一個問題,就是會受光影響。因此在實際使用中,它可能出現(xiàn)故障。因此我們使用了商業(yè)R/F通訊模塊并介紹了一種高精度和高可靠性的信息傳遞數(shù)字化方法。我們把傳輸頻率設(shè)置為4kHz。兩部分產(chǎn)生一個數(shù)字化數(shù)據(jù)。在數(shù)字化數(shù)據(jù)中,如果在這兩部分之間產(chǎn)生一個狀態(tài)改變,這個數(shù)據(jù)位為1。如果沒有改變,則為0。在兩個數(shù)字化數(shù)據(jù)中,狀態(tài)改

25、變經(jīng)常發(fā)生。如圖3所示。因此數(shù)據(jù)傳輸率為2000bit/sec。我們定義了一個信道作為基本單元,一個信道有9位,一位是起始位,其余的8位是數(shù)字位。因為管理員給每個機器人發(fā)送位置和旋轉(zhuǎn)信息,每個機器人需要3個信道。我們定義了一個塊作為基本的命令單元。如圖4所示,一個塊包含17個信道,由于每個機器人需要3個信道,存在一個起始信道和一個為了將來使用的額外信道。因此,傳輸率為大約13個字每秒。這就意味著管理員能夠在每秒中給5個機器人傳送信息。&

26、lt;/p><p><b>  4.視覺系統(tǒng)</b></p><p>  在實時應用中,辨別出機器人和足球的位置是很重要的。我們使用了兩個單色照相機。一個有紅色過濾器,另一個有藍色。如上所述,機器人中的LED配置形成一個等邊三角形。視覺系統(tǒng)可以很容易地探測到機器人。對于足球來說,視覺系統(tǒng)可以通過比較兩幅圖像來探測。在比賽之前,我們調(diào)整照相機圖像的LUTs(查找表),來消除

27、除了球顏色之外的其它顏色的影響。在我們的實驗中,只有一個單色照相機的視覺系統(tǒng)在檢測球時魯棒性差。因此,我們使用了兩個照相機。對于對手機器人的探測,MIROSOT制定了一個規(guī)則,在頂端有可以辨別隊伍顏色的一個3.5*3.5cm的顏色模塊。我們也可以通過調(diào)節(jié)LUTs使視覺系統(tǒng)能探測對手機器人。在實驗中,視覺系統(tǒng)可以在每秒種探測到足球和10個機器人5次。</p><p>  5.機器人的位置控制</p>

28、<p>  機器人位置控制的方塊圖如下所示。圖5顯示了整個分塊系統(tǒng):規(guī)劃和執(zhí)行。全局監(jiān)測環(huán)表示規(guī)劃是一個反饋環(huán):視覺系統(tǒng)探測機器人的位置和管理員制定命令。一旦視覺系統(tǒng)探測到機器人和球的位置,管理員將根據(jù)當前位置數(shù)據(jù)作出每個機器人的路徑規(guī)劃。這是一個緩慢的反饋過程。在表示執(zhí)行的局部控制環(huán)中,每個機器人利用解碼信號和理想位置信息進行位置和速度控制。它的理想位置信息是由管理員提供,進行位置和速度的局部控制。</p>&

29、lt;p>  圖5 控制系統(tǒng)的組成圖</p><p>  我們在圖6中給出了系統(tǒng)的配置。圖7表示一個實際機器人可以很輕松的識別出一個高爾夫球。</p><p>  圖6系統(tǒng)配置的詳細說明</p><p>  圖7 實際機器人和高而夫球</p><p>  四、機器人足球賽的協(xié)作和路徑規(guī)劃算法</p><p>  

30、我們從兩點進行了算法的考慮。一是協(xié)作,另一個是每個機器人的路徑規(guī)劃。在MIROSOT96中,規(guī)定三個機器人參加比賽。因此我們考慮三個機器人為一個多智能體系統(tǒng)。關(guān)于協(xié)作,我們采用一個機器人是守門員,其余的機器人根據(jù)不同的模式進行角色分配。存在幾種模式。我們實驗了4種。圖8表示4種模式?;旧?,我們采用分割—征服啟發(fā)式策略。我們把場地分成兩部分,分配機器人到兩個場地上。每個機器人根據(jù)分配的區(qū)域承擔不同的角色。模式(a)和模式(b)表示場地的

31、自然分割。模式(c)表示有更大的進攻區(qū)域。模式(d)表示兩個機器人的角色不定。這些模式隨著對手策略進行改變。我們將驗證這些已建立的模式和開發(fā)更有效的模式。</p><p>  對于每個機器人的路徑規(guī)劃,我們使用了帶參量的三次樣條。價值函數(shù)有三部分組成。一是最小化曲率的變化,另一個是最小化時間,第三是避障。應用一個機器人的實驗表示我們的算法可以應用于機器人足球賽。</p><p>  我們將

32、開發(fā)更多有效的機器人足球賽的算法。</p><p><b>  圖8測試模式</b></p><p>  五、結(jié)論和將來的研究</p><p>  在本文中,我們給出了采用集中式在線系統(tǒng)的理由和應用硬件的標準。從系統(tǒng)結(jié)構(gòu)的角度出發(fā)考慮了多種多智能體系統(tǒng)。利用兩種標準,我們對多智能體系統(tǒng)進行了分類??紤]到機器人足球賽的特征,我們采用了集中式在線系

33、統(tǒng)。本文給出了我們的系統(tǒng)在應用于機器人足球賽的合理性的理由,詳細描述了系統(tǒng)。為了分配計算負載,管理員進行了路徑規(guī)劃,機器人執(zhí)行控制環(huán)——全局監(jiān)視和局部控制。為了局部查找,在機器人的前端有4個IR傳感器。4個LEDs放置在CPU主板中,成等邊三角形,利于視覺系統(tǒng)檢測位置和旋轉(zhuǎn)。我們設(shè)計了數(shù)字化編碼數(shù)據(jù)格式用于通訊。在分別測試后,這些很容易結(jié)合起來。我們系統(tǒng)的詳細說明對于那些打算參加足球比賽的和想要制作相似系統(tǒng)的有一定的幫助。</p&

34、gt;<p>  利用已經(jīng)建立的系統(tǒng),我們將應用模糊、神經(jīng)網(wǎng)絡(luò)、遺傳算法等工具來建立多機器人路徑規(guī)劃系統(tǒng)。目前,我們已經(jīng)建立了分割—征服啟發(fā)式策略。這需要開發(fā)更多的有效足球賽算法并把實際系統(tǒng)與算法結(jié)合起來測試。</p><p><b>  附錄2 外文原文</b></p><p>  Development of a multi-agent system

35、 for robot soccer game</p><p>  1、 Introduction</p><p>  As modern industrial society progresses, the needs for useful robots are growing. Especially, mobile robots are special issue that gradua

36、lly expands its realm in industrial and studying topics. Researches on mobile robots have been mainly concentrated on single mobile robot. But, the development of multi-agent system is strongly needed by the growth of co

37、mplexity of tasks for robots to perform.</p><p>  The multi-agent systems have been studied by many researchers[l-3]. Generally, multi-agent system is defined as the system composed of more than 2 robots [4]

38、 and performs the given task by cooperation. The system has some different factors compared with single robot system. First, the environment for robots to confront is dynamic. In multi-agent system, the robots themselves

39、 constitute dynamic environment, because each robot should recognize the other robots as moving obstacles. Many previous re</p><p>  Robot soccer is an interesting domain for studying the multi-agent system.

40、 The players must work together: It means a sort of cooperation. Also, they play the game in dynamic environment: predictable and unpredictable environment - our robots and opponent's robots, respectively. The main o

41、bject is to put the ball in opponent's goal as frequently as possible in presence of opponent's robots which have the same task. So, according to a situation, our robots decide which action they take -defense o&l

42、t;/p><p>  One of the advantages of robot soccer game is direct comparison of different systems. Many robot soccer systems are gathered in some competitions. We participated in a Soccer robot competition in Tae

43、jon, Korea called MIROSOT96 [8]. MIROSOT makes some rules. The rules describe precise specification for soccer game. The playground is rectangular with its length 130cm, its width 90cm. An orange golf ball is selected as

44、 the play ball. The size of a robot is restricted within 7.5*7.5*7.5cm. One team </p><p>  In this paper, we explain some factors to be considered in establishing complete system. First, since the system arc

45、hitecture is very important, we decide the overall system as a centralized on-line system on the basis of surveys of multi-agent systems. Second, the overall system can be divided into three parts - A robot, communicatio

46、n and vision system. We describe the specifications of components of each part and the reasons to decide them. It would be helpful for later improvement.</p><p>  The rest of the paper is organized as follow

47、s. Section 2 gives some surveys of system architectures and selection of our soccer robot system. Section 3 gives detailed descriptions of implemented hardware, especially mini robots. Section 4 gives cooperation and pat

48、h plan algorithm for robot soccer game. Section 5 gives conclusion of this paper and presents further works.</p><p>  2、Categorization of multi-agent system and selection of soccer robot system</p>&l

49、t;p>  The survey on this issue is closely related in Arai's work[4]. We can categorize multi- agent system based on two criteria. One is "Who makes decision and orders?" -Centralized / Decentralized , th

50、e other is "When does the system make plans?" - On line / Offline.</p><p>  Centralized system means that a supervisor integrates all available data, plans the behaviors of all the robots and makes

51、 commands. Since a supervisor considers all the robots simultaneously, the system can achieve the optimization of the motions of all the robots. But, as the number of robot increases, more computational power of a superv

52、isor is needed. If the supervisor makes any fault, there is no way for the robots to correct it.</p><p>  Decentralized system means that each robot makes plan for itself on the basis of collected informatio

53、n from other robots and its own sensors. In the system, there is not considerable increasing computational load as the number of robots increases. Even if one robot fails to work, other robots work well. But, the system

54、cannot guarantee the optimization of the motions of all the robots.</p><p>  Off-line system means that all the paths are planned before all the robots move. Because of no restriction of time and computing p

55、ower, the system can achieve optimization. But, since the system assumes static environment, it is not robust to small variation of environment. In real world, it may malfunction with some variances.</p><p>

56、  On-line system means real-time planning. It is robust to dynamic environment. But, it needs large computational power and effective algorithm.</p><p>  In a lot of researches, the above two categorizations

57、 are interrelated each other. We summarize the researches in Table 1.</p><p>  Table 1. Categorization of multi-agent system</p><p>  In MIROSOT96, The size of a robot is restricted. Therefore,

58、it is difficult to implement a robot with large computational power. Also, it is important to decide what a robot must equip. Basically, a robot has to equip actuator module and communication module. Additional equipment

59、s are selected and implemented considering the space of a robot. Soccer game needs global information of our robots' position. So, we decide the centralized system as our system. From the viewpoint of path planning t

60、ime,</p><p>  In centralized on-line system, a supervisor acquires all available information of whole environment and the robots. Simultaneously, a supervisor should plan all the robots' paths in real-ti

61、me. Therefore it requires fast computing power. To decrease the burden of a supervisor, we choose partitioned system which separate main planning and executing. This is somewhat similar to the works of Shakey[15], Firby[

62、16]. In our soccer robot system, a supervisor makes plans of all the robots on the basis of</p><p>  Figure 1. The constitution of our soccer robot system</p><p>  3、System implementation</p&

63、gt;<p>  System is composed of three parts - a supervisor, vision and 5 robots. A supervisor is a PC - pentium processor -which makes plan in real time, and vision system has two cameras which have red and blue fi

64、lter respectively, and image processing board which has a DSP and memory. A robot has a CPU, communication module, IR sensors, motors, etc. These three parts are related one another. Detailed descriptions are given in fo

65、llowing chapters.</p><p>  1. Configuration of individual robot</p><p>  A robot is consisted of mechanical part, CPU board, communication(receiver) module and sensor board. Its size is within 7

66、.5*7.5*7.5 cm.</p><p>  2. Mechanical part</p><p>  Mechanical part of a robot is consisted of two motors, encoders, gearheads, wheels, a ball caster, and a frame. The frame is designed for easy

67、, compact and hardy integration. Motors and gearheads are selected in consideration for operating voltage, internal resistance, mechanical time constant. Its operating voltage is 6V. Reduction ratio of gearhead is 1:41.

68、A diameter of a wheel is 32 mm. The no-load speed of a motor is 15200 rev/min. So, no-load speed of robots can be calculated as about 62 c</p><p>  3. CPU board and sensor board</p><p>  Figure

69、2. The CPU board and sensor board</p><p>  the locations of LEDs in CPU board forrobot's position and rotation</p><p>  the locations of IR sensors in sensor board</p><p>  In C

70、PU board, data processing and motor control are carried out. CPU board consists of two PCBs - same size of 7.5cm*6.0cm. We choose 80C196KC as robot's CPU. Its basic operation is to control motors according to the dat

71、a from a supervisor via communication module. Also, it fuses the data from a supervisor and sensors equipped in itself. 80C196KC has three PWM generators which are used to control motors and 8 channel A/D converters whi

72、ch are used to receive the data from its own sensors. Motor </p><p>  As can be seen in Figure 2(a), 4 LEDs are in CPU board located above in a robot. Three LEDs make an isosceles triangle. Because LED is th

73、e most brightest thing in playground, vision system detects the position and rotation of a robot easily. The other LED located at the center of triangle is used to provide some information to a supervisor. Turning on the

74、 LED means that a robot detects the ball by its own sensors.</p><p>  In sensor board, 4 pairs of IR sensor consisted of transmitter and receiver are located in fixed positions. As can be seen in Figure 2(b)

75、, one pair is located in higher position to distinguish a robot from the ball. It can detect only the ball. The other three pairs are located in the lower position. They can detect the ball and robots. So, a CPU can reco

76、gnize the obstacle detected by its own sensors - a ball and a robot. Since sensor board is in front of a robot, it can perform local searching </p><p>  Figure 3. The shape of digitally coded data</p>

77、<p>  Figure 4. The constitution of communication signal</p><p>  3. Communication</p><p>  We choose unidirectional communication - from a supervisor to robots. Generally, to share more i

78、nformation, bi-directional communication is better. But, it needs more space and increases the complexity of tasks which robots and a supervisor carry out. In our system, we use vision system as a global monitor. So, it

79、is not necessary for a robot to transmit its data to a supervisor. Therefore, we adopt unidirectional communication.</p><p>  There are two prevalent communication methods - IR and R/F. IR communication has

80、a problem such that it is affected by light. So, in real competition, it may malfunction. Therefore, we modify the commercial R/F communication module and introduce a digital method for high precision and good reliabilit

81、y of information transfer. We set the carrier frequency as 4kHz. Two sections make one digital data. If there is a state change between two sections in the digital data, this digital data means " 1" </p>

82、<p>  future purpose. So, the transfer rate is about 13 block per second. It means that a supervisor can transfer information to five robots 13 times per second.</p><p>  4. Vision system</p>&l

83、t;p>  It is very important to recognize the positions of robots and the ball in real-time. We use two monochrome cameras. One has red filter and the other has blue filter. As mentioned above, a robot has an isosceles

84、triangle shaped LED configuration. Vision system can easily detect a robot. As for a ball, vision system compare two image for detecting the ball. We regulate LUTs( Look Up Table ) of image data from two cameras to elimi

85、nate other colors except a ball color before competition. In our expe</p><p>  5.Position control of a robot</p><p>  The block diagram of position control of a robot is presented in Figure 5. T

86、he figure shows the partitioned system : Planning and executing. Global Monitoring loop representing the Planning is a feedback loop in which vision system detect a robot position and a supervisor makes commands. As soon

87、 as vision system detects positions of robots and the ball, a supervisor makes path planning of each robot according to the current position data. It is slow feedback. In Local Control loop representing e</p><

88、p>  Figure 5. Constitution of Control system</p><p>  Figure 6. The configuration of our system.a detailed description.</p><p>  Figure 7. The actual robot with a golf ball</p><p&g

89、t;  4、Cooperation and path plan algorithm for robot soccer game</p><p>  We are making algorithms in consideration for two points. One is for cooperation; the other is for path plan of each robot. In MIROSOT

90、96, three robots were permitted to play game. Therefore, we make algorithms considering three robots as a multi-agent system. For viewpoint of cooperation, one robot is a goal keeper, the others takes the roles according

91、 to the modes. There can be several modes. We tested 4 modes. Figure 8 shows 4 modes. Basically, we use divide-and-conquer heuristics. We divide t</p><p>  For path plan of each robot, we use parametric cubi

92、c spline. The cost function is consisted of three term. One is for minimization of variations of curvature, the other is for minimization of time, the third is for obstacle avoidance. The results of one robot experiment

93、show that our algorithm can be applied to robot soccer game[17].We are going to develop more effective algorithm for robot soccer game. </p><p>  Figure 8. The 4 tested modes</p><p>  5、Conclusi

94、ons and further works</p><p>  In this paper, we provide the reasons why we adopt centralized on-line system as our robot soccer system and specification of implemented hardware. We survey many multi-agent s

95、ystems from the viewpoint of system architecture. Using two criteria, we categorize the multi-agent systems. Then, we select the centralized on-line system considering the nature of robot soccer game. This paper explains

96、 suitability of our system to robot soccer game for many reasons. Also, we explain our system in detail.</p><p>  Using established system, we are going to build multiple robot path planning system using sev

97、eral techniques - fuzzy, neural network, genetic algorithm and so on. At present, We have established divide-and-conquer heuristics. It is needed to develop more effective soccer algorithms and test our algorithm combine

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論