版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> Integration and Performance Analysis of Flywheel Energy Storage System in an ELPH Vehicle</p><p> I. INTRODUCTION</p><p> Conventional Internal Combustion Engine (ICE) vehicles bear
2、 the disadvantages of poor fuel economy and environmental pollution. Basis of poor fuel economy are (i) Operation of engine in lower efficiency region during most of the time in a drive cycle and (ii) Dissipation of vehi
3、cle kinetic energy during braking . Electric battery operated vehicles have some advantages over the</p><p> ICE driven vehicles, but their short range is a major lacuna in their performance. The shortcomin
4、gs of both of these can be overcome by using a Hybrid Electric Vehicle (HEV). An HEV comprises conventional propulsion system with an on-board Rechargeable Energy Storage System (RESS) to achieve better fuel economy than
5、 a conventional vehicle as well as higher range as compared to an Electric Vehicle. HEVs prolong the charge on RESS by capturing kinetic energy via regenerative braking, and some HEVs</p><p> An HEV's e
6、ngine is smaller and may run at various speeds, providing higher efficiency. Reference </p><p> suggests that HEVs allow fuel economy and reduced emissions compared to conventional ICE vehicles by:</p>
7、;<p> 1. Allowing the engine to stop under vehicle stop condition,</p><p> 2. Downsizing the engine for same peak load requirements, as the motor will assist the engine for</p><p> suc
8、h higher loads, and</p><p> 3. Allowing regenerative braking, not possible in conventional vehicle. In urban drive conditions,</p><p> about 30% of the fuel can be saved through regenerative b
9、raking because of the frequent stop and</p><p> go conditions .</p><p> Series and Parallel hybrids are the two major configurations of the HEVs. Even in Parallel Configuration of Hybrid Vehic
10、les, there are several possibilities in which an arrangement between the engine, motor and transmission can be made to achieve the desired performance from the vehicle. In general there are two methods to couple the ener
11、gy of the engine and motor namely, (i) Speed Coupling, and (ii) Torque Coupling. In Speed Coupling the speeds of engine and motor are</p><p> added in appropriate fractions to achieve the final speed of the
12、 drive, whereas in Torque Coupling the torque from the engine and motor are summed up in Torque Coupler, which can be either an epicyclic gear train or simply the rotor of the electric machine (motor). In latter case the
13、 rotor of the electric machine is integrated with the shaft from the engine through a clutch. The parallel hybrid is considered for the present analysis because of its significant advantages over the series hybrid, s<
14、/p><p> requirements, and modest power densities . To overcome these shortcomings, research activities have focused upon other alternatives of Energy Storage System (ESS). FESS is a prominent candidate for ESS
15、 applications in HEVs. Flywheels in particular offer very high reliability and cycle life without degradation, reduced ambient temperature concerns, and is free of environmentally harmful materials .Flywheels offer many
16、times higher energy storage per</p><p> kilogram than conventional batteries, and can meet very high peak power demands. Power density, which is a crucial parameter for ESS in HEVs, of an FESS is much highe
17、r as compared to a chemical battery. Deeper depth of discharge, broader operating temperature range adds to the advantages of using an FESS over batteries. The FESS employed for the present analysis is an ‘Integrated Fly
18、wheel Energy Storage System with Homopolar Inductor Motor/Generator and High-</p><p> Frequency Drive’ . The use of integrated design has various benefits over other contemporary FESS designs. Some of these
19、 advantages are reduced system weight, lower component count, reduced material costs, lower mechanical complexity, and reduced manufacturing cost.</p><p> II. SYSTEM DESCRIPTION</p><p> The ar
20、rangement used for analysis consists of an ‘Electrically Peaking Hybrid Electric propulsion system’ that has a parallel configuration . Through the use of a parallel configuration the engine has been downsized as compare
21、d to the engine required for a similar conventional ICE vehicle. A small engine of power approximately equal to the average load power is used in the model. An AC induction motor is used to supply the excess power requir
22、ed by the peaking load. The electric machine can also </p><p> acceleration pedal and brake pedal. With the electrically peaking principle, two control strategies for the drive have been used . The first on
23、e is called ‘MAXIMUM BATTERY SOC’ control strategy, which in particular aims at maintaining a particular range of SOC in the battery at any instant. In this SOC range, the battery is having maximum efficiency and thus, t
24、he best performance of the vehicle which is employing a chemical battery, can be achieved through this strategy. Under this strategy the </p><p> best performance of the chemical battery, is employed in the
25、 analyzed model comprising FESS, so that a direct comparison can be drawn over the performance level of an FESS as compared to a chemical battery, working in its best efficiency range. The other control strategy develope
26、d is called ‘ENGINE TURN-ON AND TURNOFF’ control strategy. Under this, the engine is turned on and off depending upon the instantaneous SOC of the RESS. This strategy can be used during highway driving. An integrated fly
27、</p><p> The simulation results are mathematically treated and are combined with the results of the practical testing as well as the simulated results of the FESS considered . A SIMULINK model (Fig. 2) is u
28、sed to perform these mathematical operations for two particular drive cycles namely (i) FTP-75 Urban Drive, and (ii) FTP-75 Highway Drive. The figure illustrates the various components of the SIMULINK model, which are us
29、ed to perform various operations, mentioned in the following text.</p><p> 飛輪儲能系統(tǒng)的集成性能分析——ELPH車輛</p><p><b> 1、引言</b></p><p> 傳統(tǒng)的內(nèi)燃機(ICE)車輛具有貧困燃油經(jīng)濟性和環(huán)境污染的缺點。燃油經(jīng)濟性差的基礎(chǔ)是
30、:(一)引擎運轉(zhuǎn)過程中,在驅(qū)動器周期及(ii)車輛損耗動能在制動過程中大部分時間在低效率的地區(qū)。電動電動車駕駛的車輛在冰面上的一些優(yōu)勢,但他們的短距離是一大空白,其性能研究。這些可以通過使用一個缺點克服,兩者在混合動力電動汽車(HEV)。戊型肝炎病毒由一個具有板上充電儲能系統(tǒng)(快速膨脹法),提供比傳統(tǒng)汽車的燃油經(jīng)濟性更好以及更高的遠程常規(guī)推進系統(tǒng)相比,一個電動車?;旌想妱悠囃ㄟ^捕捉動能延長對快速膨脹法通過再生制動充電,有的還使用混合電
31、動汽車通過發(fā)電機(男/ G)的充電的快速膨脹法的發(fā)動機來發(fā)電。</p><p> 一種混合動力汽車的發(fā)動機更小,可以運行在不同的速度,提供更高的效率?;旌想妱悠嚨膮⒖冀ㄗh,使燃油經(jīng)濟性和降低排放比傳統(tǒng)內(nèi)燃機車輛:1。讓發(fā)動機停止車輛停止狀態(tài)下,2。瘦身負荷要求,發(fā)動機同樣的高峰期,由于汽車發(fā)動機的負荷將協(xié)助這些較高,3。允許再生制動,而不是在傳統(tǒng)的車輛可能。在城市駕駛條件下,約30%的燃料可以節(jié)省通過再生制動
32、,因為經(jīng)常走走停停的條件。</p><p> 串并聯(lián)混合動力車的混合電動汽車的兩個主要的配置。即使在混合動力汽車并行配置,其中有一個引擎之間的安排,電機和傳動,可實現(xiàn)從車輛所需的性能幾種可能性。一般有兩種方法來夫婦的發(fā)動機和電動機的能量,即(一)速度耦合,以及(ii)扭矩耦合。在汽車發(fā)動機轉(zhuǎn)速和速度的耦合的分數(shù)將在適當?shù)膶崿F(xiàn)發(fā)動機和電動機的扭矩最后在驅(qū)動器的速度,而轉(zhuǎn)矩耦合的總結(jié),在轉(zhuǎn)矩耦合器可用于任何一個行星
33、齒輪火車或簡單的異步電機(馬達轉(zhuǎn)子)。在后一種情況下,在電機轉(zhuǎn)子集成了從發(fā)動機軸通過離合器。并聯(lián)式混合動力被認為是由于其具有明顯的優(yōu)勢分析目前在系列雜交,比如降低排放,提高效率,更簡單的配置和更好的性能。在分析中考慮的配置是'預(yù)傳動扭矩耦合并聯(lián)混合動力列車'。用于板載快速膨脹法有不同的候選人。到目前為止鉛酸電池為主,因為體積小,容易獲得,成本低的產(chǎn)業(yè)。然而,電池的缺點,例如有限的生命周期,保養(yǎng)和調(diào)節(jié),</p>
34、<p> 要求,而溫和的功率密度。為了克服這些缺點,研究活動主要集中在能源儲存系統(tǒng)(ESS)的其他選擇。鼻內(nèi)鏡在混合電動汽車是一個突出的候選人ESS的應(yīng)用。飛輪提供特別的高可靠性和循環(huán)退化,失去生活,降低環(huán)境溫度的關(guān)注,并免費對環(huán)境有害的材料。飛輪提供了許多倍,比傳統(tǒng)電池的能量儲存每公斤,可滿足高峰電力需求非常高。功率密度,這是一個ESS的關(guān)鍵參數(shù)的混合電動汽車的鼻內(nèi)鏡手術(shù),大大提高相比,化學電池。更深的深度放電,寬工作
35、溫度范圍內(nèi)增加了對電池的使用鼻內(nèi)窺鏡手術(shù)的優(yōu)點。目前分析的鼻內(nèi)鏡采用的是一個'高調(diào)速'綜合飛輪儲能系統(tǒng)的單極感應(yīng)電動機/發(fā)電機。整體設(shè)計采用現(xiàn)代的設(shè)計比其他各種利益的適應(yīng)癥。這些優(yōu)勢有些是降低系統(tǒng)重量,降低元件數(shù)量,降低材料成本,降低機械復(fù)雜性,并降低了制造成本。</p><p><b> 2、系統(tǒng)描述</b></p><p> 分析所用的電調(diào)峰安
36、排包括混合動力電動推進系統(tǒng),有一個平行配置一'。通過使用并行配置的發(fā)動機已被縮減為1比同類傳統(tǒng)內(nèi)燃機汽車所需的引擎。小型發(fā)動機的功率約等于平均負載功率是在模型中使用。交流異步電動機是一種用于電力供應(yīng)過剩的調(diào)峰負荷要求。該電機還可以吸收發(fā)動機的功率,而超出負載功率比峰值低。這種權(quán)力,隨著再生制動功率,用于收取的適應(yīng)癥維持在一個合理水平的國家充電(SOC)的。圖。 1顯示了整車說明預(yù)傳輸扭矩耦合結(jié)構(gòu)原理圖,以及該驅(qū)動器的車輛運行的其
37、他主要成分是由車輛控制器管理。它發(fā)出的控制信號,電機控制器,發(fā)動機控制器(油門)和鼻內(nèi)鏡取決于控制器的控制策略和輸入信號。基本上輸入信號是從加速踏板和剎車踏板。隨著電力調(diào)峰的原則,兩個驅(qū)動器控制策略已被使用。第一個是所謂'最大限度地延長電池的SOC控制的戰(zhàn)略,特別是旨在維護電池在任何瞬間的SOC的特定范圍。在此范圍內(nèi)的SOC,電池是有最高的效率,因此,該車輛是雇用一個化學電池的最佳性能,可以通過這一戰(zhàn)略的實現(xiàn)。根據(jù)這項戰(zhàn)略的引擎
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 飛輪儲能系統(tǒng)畢業(yè)設(shè)計
- 汽車專業(yè)--畢業(yè)設(shè)計外文翻譯
- 車輛工程專業(yè)畢業(yè)設(shè)計的外文翻譯
- 汽車專業(yè) 機械 畢業(yè)設(shè)計翻譯外文翻譯
- 車輛工程專業(yè)畢業(yè)設(shè)計外文翻譯5
- 汽車專業(yè)畢業(yè)設(shè)計外文翻譯--汽車的轉(zhuǎn)向控制
- 汽車專業(yè)畢業(yè)設(shè)計外文翻譯6
- 汽車專業(yè)畢業(yè)設(shè)計外文翻譯--集成式發(fā)動機輔助混合動力系統(tǒng)
- 汽車專業(yè)畢業(yè)設(shè)計外文翻譯---汽車的基本機械機構(gòu)
- 飛輪儲能系統(tǒng)的研究.pdf
- 飛輪儲能系統(tǒng)中電機電磁場分析及飛輪對系統(tǒng)儲能影響研究.pdf
- [機械模具數(shù)控自動化專業(yè)畢業(yè)設(shè)計外文文獻及翻譯]【期刊】通過集成磁軸承輔助有限元分析的一種新型飛輪儲能存儲系統(tǒng)的設(shè)計與建模-中文翻譯
- 太陽能飛輪系統(tǒng)的儲能研究.pdf
- 飛輪儲能系統(tǒng)電機與軸系設(shè)計.pdf
- 汽車專業(yè)外文翻譯----gpsgsm車輛監(jiān)控系統(tǒng)研究
- 汽車專業(yè)畢業(yè)設(shè)計外文翻譯-- srs 安全氣囊和空調(diào)系統(tǒng)
- 轉(zhuǎn)向系統(tǒng)汽車車輛畢業(yè)設(shè)計類外文文獻翻譯中英文翻譯
- 轉(zhuǎn)向系統(tǒng)汽車車輛畢業(yè)設(shè)計類外文文獻翻譯中英文翻譯
- 汽車專業(yè)畢業(yè)設(shè)計文獻翻譯
- 太陽能畢業(yè)設(shè)計外文翻譯
評論
0/150
提交評論