版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、INVITEDPAPERTakingtheHumanOutoftheLoop:AReviewofBayesianOptimizationThepaperintroducesthereadertoBayesianoptimizationhighlightingitsmethodicalaspectsshowcasingitsapplications.ByBobakShahriariKevinSwerskyZiyuWangRyanP.Ada
2、msNodeFreitasABSTRACT|BigDataapplicationsaretypicallyassociatedwithsystemsinvolvinglargenumbersofusersmassivecomplexsoftwaresystemslargescaleheterogeneouscomputingstagearchitectures.Theconstructionofsuchsystemsinvolvesma
3、nydistributeddesignchoices.Theendproducts(e.g.recommendationsystemsmedicalanalysistoolsrealtimegameenginesspeechrecognizers)thusinvolvemanytunableconfigurationparameters.Theseparametersareoftenspecifiedhardcodedintotheso
4、ftwarebyvariousdevelopersteams.Ifoptimizedjointlytheseparameterscanresultinsignificantimprovements.Bayesianoptimizationisapowerfultoolfthejointoptimizationofdesignchoicesthatisgaininggreatpopularityinrecentyears.Itpromis
5、esgreaterautomationsoastoincreasebothproductqualityhumanproductivity.ThisreviewpaperintroducesBayesianoptimizationhighlightssomeofitsmethodologicalaspectsshowcasesawiderangeofapplications.KEYWDS|Decisionmakingdesignofexp
6、erimentsoptimizationresponsesurfacemethodologystatisticallearningI.INTRODUCTIONDesignproblemsarepervasiveinscientificindustrialendeavours:scientistsdesignexperimentstogaininsightsintophysicalsocialphenomenaengineersdesig
7、nmachinestoexecutetasksmeefficientlypharmaceuticalresearchersdesignnewdrugstofightdiseasecompaniesdesignwebsitestoenhanceuserexperienceincreaseadvertisingrevenuegeologistsdesignexplationstrategiestoharnessnaturalresource
8、senvironmentalistsdesignsenswkstomonitecologicalsystemsdevelopersdesignsoftwaretodrivecomputerselectronicdevices.Allthesedesignproblemsarefraughtwithchoiceschoicesthatareoftencomplexhighdimensionalwithinteractionsthatmak
9、ethemdifficultfindividualstoreasonabout.FexamplemanyganizationsroutinelyusethepopularmixedintegerprogrammingsolverIBMILOGCPLEX1fschedulingplanning.Thissolverhas76freeparameterswhichthedesignersmusttunemanuallyVanoverwhel
10、mingnumbertodealwithbyh.Thissearchspaceistoovastfanyonetoeffectivelynavigate.Megenerallyconsiderteamsinlargecompaniesthatdevelopsoftwarelibrariesfotherteamstouse.Theselibrarieshavehundredsthoussoffreechoicesparameterstha
11、tinteractincomplexways.Infactthelevelofcomplexityisoftensohighthatitbecomesimpossibletofinddomainexpertscapableoftuningtheselibrariestogenerateanewproduct.Asasecondexampleconsidermassiveonlinegamesinvolvingthefollowingth
12、reeparties:contentprovidersuserstheanalyticscompanythatsitsbetweenthem.Theanalyticscompanymustdevelopprocedurestoautomaticallydesigngamevariantsacrossmillionsofuserstheobjectiveistoenhanceuserexperiencemaximizethecontent
13、provider’srevenue.ManureceivedMay12015revisedJuly62015acceptedJuly202015.DateofpublicationDecember102015dateofcurrentversionDecember182015.B.ShahriariiswiththeUniversityofBritishColumbiaVancouverBCV6T1Z4Canada(email:).K.
14、SwerskyiswiththeUniversityofTontoTontoONM5S1A1CanadaalsowithTwitterBostonCambridgeMA02139USA(email:).Z.WangiswithOxfdUniversityOxfdOX12JDU.K.alsowithGoogleDeepmindLondonN1C4AGU.K.(email:ziyu@).R.P.AdamsiswithHarvardUnive
15、rsityCambridgeMA02138USAalsowithTwitterUSA(email:).N.deFreitasiswithOxfdUniversityOxfdOX12JDU.K.withGoogleDeepMindLondonN1C4AGU.K.alsowiththeCanadianInstitutefAdvancedResearchTontoONM5G1Z8Canada(email:nodefreitas@).Digit
16、alObjectIdentifier:10.1109JPROC.2015.24942181softwarecommerceoptimizationcplexoptimizer00189219?2015IEEE.Translationscontentminingarepermittedfacademicresearchonly.Personaluseisalsopermittedbutrepublicationredistribution
17、requiresIEEEpermission.See:www.ieee.gpublications_stardspublicationsrightsindex.htmlfmeinfmation.148ProceedingsoftheIEEE|Vol.104No.1January2016Algithm1:Bayesianoptimization1:fn12...do2:newxn1byoptimizingacquisitionfuncti
18、on?xn1argmaxx?xDn3:queryobjectivefunctiontoobtainyn14:augmentdataDn1fDnxn1yn1g5:updatestatisticalmodel6:endfOneproblemwiththisminimumexpectedriskframewkisthatthetruesequentialriskuptothefullevaluationbudgetistypicallycom
19、putationallyintractable.Thishasledtotheintroductionofmanymyopicheuristicsknownasacquisitionfunctionse.g.Thompsonsampling(TS)probabilityofimprovementexpectedimprovement(EI)upperconfidenceboundsentropysearch(ES).Theseacqui
20、sitionfunctionstradeoffexplationexploitationtheiroptimaarelocatedwheretheuncertaintyinthesurrogatemodelislarge(explation)wherethemodelpredictionishigh(exploitation).Bayesianoptimizationalgithmsthenthenextquerypointbymaxi
21、mizingsuchacquisitionfunctions.Naturallytheseacquisitionfunctionsareoftenevenmemultimodaldifficulttooptimizeintermsofqueryingefficiencythantheiginalblackboxfunctionf.Therefeitiscriticalthattheacquisitionfunctionsbecheapt
22、oevaluateapproximate:cheapinrelationtotheexpenseofevaluatingtheblackboxf.Sinceacquisitionfunctionshaveanalyticalfmsthatareeasytoevaluateatleastapproximateitisusuallymucheasiertooptimizethemthantheiginalobjectivefunction.
23、A.PaperOverviewInthispaperweintroducetheingredientsofBayesianoptimizationindepth.OurpresentationisuniqueinthatweaimtodisentanglethemultiplecomponentsthatdeterminethesuccessofBayesianoptimizationimplementations.Inparticul
24、arwefocusonstatisticalmodelingFig.1.IllustrationoftheBayesianoptimizationprocedureoverthreeiterations.Theplotsshowthemeanconfidenceintervalsestimatedwithaprobabilisticmodeloftheobjectivefunction.Althoughtheobjectivefunct
25、ionisshowninpracticeitisunknown.Theplotsalsoshowtheacquisitionfunctionsinthelowershadedplots.Theacquisitionishighwherethemodelpredictsahighobjective(exploitation)wherethepredictionuncertaintyishigh(explation).Notethatthe
26、areaonthefarleftremainsunsampledaswhileithashighuncertaintyitiscrectlypredictedtoofferlittleimprovementoverthehighestobservation[27].Shahriarietal.:TakingtheHumanOutoftheLoop:AReviewofBayesianOptimization150Proceedingsof
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010-2016精選論文2015-1503.04069
- 2010-2016精選論文2013-1312.5602v1
- 2010-2016精選論文2014-d14-1162
- 2010-2016精選論文2013-wang_iccv13
- 2010-2016精選論文2014-1408.5882v2
- 2010-2016精選論文2014-deepface-closing-the-gap-to-human-level-performance
- 2010-2016精選論文2015_batch_normalization_accelerating_deep_network_training_by_reducing_internal_covariate_shift
- 山東高考英語(yǔ)作文題及范文(2010-2016)
- 2010-2016年南京中考數(shù)學(xué)試題及答案
- 2010-2016年碩士研究生畢業(yè)情況
- 高中物理選修3-3(2010-2016年)高考題精選(含解析)
- 2010-2016司考國(guó)際私法司考真題及解析
- 當(dāng)下中國(guó)電影的救贖性研究(2010-2016).pdf
- 國(guó)產(chǎn)系列電影傳播效果研究(2010-2016年)_2129.pdf
- 2010-2016年考研英語(yǔ)二歷年真題及答案解析
- 2010-2016生命科學(xué)技術(shù)學(xué)院獲獎(jiǎng)情況
- ieee std 802.3by-2016
- 次北固山下-++中考古詩(shī)賞析要點(diǎn)解析++2010-2016
- 北京大學(xué)社會(huì)工作考研真題2010-2016
- 新浪網(wǎng)2010-2016年性工作者媒介形象研究.pdf
評(píng)論
0/150
提交評(píng)論