2010-2016精選論文2016-shahriari-bayesopt-ieee-2016_第1頁(yè)
已閱讀1頁(yè),還剩27頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、INVITEDPAPERTakingtheHumanOutoftheLoop:AReviewofBayesianOptimizationThepaperintroducesthereadertoBayesianoptimizationhighlightingitsmethodicalaspectsshowcasingitsapplications.ByBobakShahriariKevinSwerskyZiyuWangRyanP.Ada

2、msNodeFreitasABSTRACT|BigDataapplicationsaretypicallyassociatedwithsystemsinvolvinglargenumbersofusersmassivecomplexsoftwaresystemslargescaleheterogeneouscomputingstagearchitectures.Theconstructionofsuchsystemsinvolvesma

3、nydistributeddesignchoices.Theendproducts(e.g.recommendationsystemsmedicalanalysistoolsrealtimegameenginesspeechrecognizers)thusinvolvemanytunableconfigurationparameters.Theseparametersareoftenspecifiedhardcodedintotheso

4、ftwarebyvariousdevelopersteams.Ifoptimizedjointlytheseparameterscanresultinsignificantimprovements.Bayesianoptimizationisapowerfultoolfthejointoptimizationofdesignchoicesthatisgaininggreatpopularityinrecentyears.Itpromis

5、esgreaterautomationsoastoincreasebothproductqualityhumanproductivity.ThisreviewpaperintroducesBayesianoptimizationhighlightssomeofitsmethodologicalaspectsshowcasesawiderangeofapplications.KEYWDS|Decisionmakingdesignofexp

6、erimentsoptimizationresponsesurfacemethodologystatisticallearningI.INTRODUCTIONDesignproblemsarepervasiveinscientificindustrialendeavours:scientistsdesignexperimentstogaininsightsintophysicalsocialphenomenaengineersdesig

7、nmachinestoexecutetasksmeefficientlypharmaceuticalresearchersdesignnewdrugstofightdiseasecompaniesdesignwebsitestoenhanceuserexperienceincreaseadvertisingrevenuegeologistsdesignexplationstrategiestoharnessnaturalresource

8、senvironmentalistsdesignsenswkstomonitecologicalsystemsdevelopersdesignsoftwaretodrivecomputerselectronicdevices.Allthesedesignproblemsarefraughtwithchoiceschoicesthatareoftencomplexhighdimensionalwithinteractionsthatmak

9、ethemdifficultfindividualstoreasonabout.FexamplemanyganizationsroutinelyusethepopularmixedintegerprogrammingsolverIBMILOGCPLEX1fschedulingplanning.Thissolverhas76freeparameterswhichthedesignersmusttunemanuallyVanoverwhel

10、mingnumbertodealwithbyh.Thissearchspaceistoovastfanyonetoeffectivelynavigate.Megenerallyconsiderteamsinlargecompaniesthatdevelopsoftwarelibrariesfotherteamstouse.Theselibrarieshavehundredsthoussoffreechoicesparameterstha

11、tinteractincomplexways.Infactthelevelofcomplexityisoftensohighthatitbecomesimpossibletofinddomainexpertscapableoftuningtheselibrariestogenerateanewproduct.Asasecondexampleconsidermassiveonlinegamesinvolvingthefollowingth

12、reeparties:contentprovidersuserstheanalyticscompanythatsitsbetweenthem.Theanalyticscompanymustdevelopprocedurestoautomaticallydesigngamevariantsacrossmillionsofuserstheobjectiveistoenhanceuserexperiencemaximizethecontent

13、provider’srevenue.ManureceivedMay12015revisedJuly62015acceptedJuly202015.DateofpublicationDecember102015dateofcurrentversionDecember182015.B.ShahriariiswiththeUniversityofBritishColumbiaVancouverBCV6T1Z4Canada(email:).K.

14、SwerskyiswiththeUniversityofTontoTontoONM5S1A1CanadaalsowithTwitterBostonCambridgeMA02139USA(email:).Z.WangiswithOxfdUniversityOxfdOX12JDU.K.alsowithGoogleDeepmindLondonN1C4AGU.K.(email:ziyu@).R.P.AdamsiswithHarvardUnive

15、rsityCambridgeMA02138USAalsowithTwitterUSA(email:).N.deFreitasiswithOxfdUniversityOxfdOX12JDU.K.withGoogleDeepMindLondonN1C4AGU.K.alsowiththeCanadianInstitutefAdvancedResearchTontoONM5G1Z8Canada(email:nodefreitas@).Digit

16、alObjectIdentifier:10.1109JPROC.2015.24942181softwarecommerceoptimizationcplexoptimizer00189219?2015IEEE.Translationscontentminingarepermittedfacademicresearchonly.Personaluseisalsopermittedbutrepublicationredistribution

17、requiresIEEEpermission.See:www.ieee.gpublications_stardspublicationsrightsindex.htmlfmeinfmation.148ProceedingsoftheIEEE|Vol.104No.1January2016Algithm1:Bayesianoptimization1:fn12...do2:newxn1byoptimizingacquisitionfuncti

18、on?xn1argmaxx?xDn3:queryobjectivefunctiontoobtainyn14:augmentdataDn1fDnxn1yn1g5:updatestatisticalmodel6:endfOneproblemwiththisminimumexpectedriskframewkisthatthetruesequentialriskuptothefullevaluationbudgetistypicallycom

19、putationallyintractable.Thishasledtotheintroductionofmanymyopicheuristicsknownasacquisitionfunctionse.g.Thompsonsampling(TS)probabilityofimprovementexpectedimprovement(EI)upperconfidenceboundsentropysearch(ES).Theseacqui

20、sitionfunctionstradeoffexplationexploitationtheiroptimaarelocatedwheretheuncertaintyinthesurrogatemodelislarge(explation)wherethemodelpredictionishigh(exploitation).Bayesianoptimizationalgithmsthenthenextquerypointbymaxi

21、mizingsuchacquisitionfunctions.Naturallytheseacquisitionfunctionsareoftenevenmemultimodaldifficulttooptimizeintermsofqueryingefficiencythantheiginalblackboxfunctionf.Therefeitiscriticalthattheacquisitionfunctionsbecheapt

22、oevaluateapproximate:cheapinrelationtotheexpenseofevaluatingtheblackboxf.Sinceacquisitionfunctionshaveanalyticalfmsthatareeasytoevaluateatleastapproximateitisusuallymucheasiertooptimizethemthantheiginalobjectivefunction.

23、A.PaperOverviewInthispaperweintroducetheingredientsofBayesianoptimizationindepth.OurpresentationisuniqueinthatweaimtodisentanglethemultiplecomponentsthatdeterminethesuccessofBayesianoptimizationimplementations.Inparticul

24、arwefocusonstatisticalmodelingFig.1.IllustrationoftheBayesianoptimizationprocedureoverthreeiterations.Theplotsshowthemeanconfidenceintervalsestimatedwithaprobabilisticmodeloftheobjectivefunction.Althoughtheobjectivefunct

25、ionisshowninpracticeitisunknown.Theplotsalsoshowtheacquisitionfunctionsinthelowershadedplots.Theacquisitionishighwherethemodelpredictsahighobjective(exploitation)wherethepredictionuncertaintyishigh(explation).Notethatthe

26、areaonthefarleftremainsunsampledaswhileithashighuncertaintyitiscrectlypredictedtoofferlittleimprovementoverthehighestobservation[27].Shahriarietal.:TakingtheHumanOutoftheLoop:AReviewofBayesianOptimization150Proceedingsof

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論