1.2 一定是直角三角形嗎_第1頁
已閱讀1頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、1.2 一定是直角三角形嗎 一定是直角三角形嗎學(xué)習(xí)目標(biāo):1. 經(jīng)歷運(yùn)用試驗(yàn)的方法說明勾股定理逆定理是正確的過程,在數(shù)學(xué)活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣。2. 掌握勾股定理逆定理和他的簡單應(yīng)用重點(diǎn)難點(diǎn):重點(diǎn): 能熟練運(yùn)用勾股定理逆定理解決實(shí)際問題難點(diǎn):用面積證勾股定理能熟練運(yùn)用勾股定理逆定理解決實(shí)際問題1.把握勾股定理的逆定理;2,用勾股定理的逆定理判定一個三角形是不是直角三角形。學(xué)習(xí)過程 學(xué)習(xí)過程1.勾股定理的逆定理:如果三角形

2、的三邊長 a、b、c 有下面關(guān)系:a +b = c ,那么這個三角形是直角三角形。 2 2 2注意:勾股定理是直角三角形的性質(zhì)定理,而勾股定理的逆定理是直角三角形的判定定理。1.用勾股定理的逆定理判定一個三角形是否是直角三角形的步驟:(1)首先求出最大邊(如 c) ;(2)驗(yàn)證 a +b 與 c 是否具有相等關(guān)系; 2 2 2若 c2=a2+b ,則△ABC 是以∠C=90°的直角三角形。 2若 c2 ≠a2+b ,則△ABC

3、 不是直角三角形。 22.直角三角形的判定方法小結(jié):(1)三角形中有兩個角互余;(2)勾股定理的逆定理;3.緊記一些常用的勾股數(shù),將為我們應(yīng)用勾股定理逆定理帶來方便,如 3、4、5;5、12、13;6、8、10;12、16、20 等。四、典型例題例 1. 在 中, , 于 D,求 Rt ABC ? ? ? C 90? CD AB ?證:(1) AB AD DB CD 2 2 2 2 2 ? ? ?(2)CD AD DB 2 ? ?分析

4、: 分析:在圖中有 與 三個直角 ? ? ABC ADC 、 ?BCD 三角形,利用勾股定理可以求證。證明: 證明:(1)? AB AC BC AC AD CD BC BD CD 2 2 2 2 2 2 2 2 2 ? ? ? ? ? ? , ,CA D B例 3.已知:如圖,△ABC 中,AB=AC,D 為 BC 上任一點(diǎn),求證:AB2-AD2=BD·DC思路分析:通常遇到等腰三角形問 題,都是作底邊

5、上的高轉(zhuǎn)化為直角三角形,再按解直角三角形的思路探索。本例 首先作 AE⊥BC 于 E,便出現(xiàn)兩個全等的直角三角形。由 AB=AC BE=EC ?結(jié)論又以平方差“面目”出現(xiàn),也就告知我們應(yīng)用勾股定理是打開思路的好方法,那么在 Rt△ABE,Rt△ADE 中,由勾股定理,得AB2=AE2+BE2AD2=AE2+DE2由于 BE、DE 均在一條直線 BC 上,通常是平方差公式進(jìn)行因式分解,轉(zhuǎn)化為求同一條線段的和差問題,使結(jié)論明朗化,于是AB2

6、-AD2=(BE+DE)(BE-DE)結(jié)合圖形知:BE+DE=BDBE-DE=CE-DE=CD例 4.如圖,已知四邊形 ABCD 的四邊 AB、BC、CD 和 DA 的長分別為 3、4、13、12,∠CBA=90°,求 S 四邊形 ABCD思路分析:遇到四邊形,通常是連對角線轉(zhuǎn)化為三角形問題,對本例連對角線 AC 為佳,因∠CBA=90°,便出現(xiàn)了直角三角形 ABC,由勾股定理可求AC2=AB2+BC2=32+42=

7、25在△CAD 中,我們又可發(fā)現(xiàn):AC2+AD2=25+122=169DC2=132=169∴AC2+AD2=CD2,由勾股定理逆定理知∴△ACD 為 Rt△,且∠DAC=90°此時,已清晰可知,這個四邊形由兩個直角三角形構(gòu)成,求其面積便容易了。S 四邊形 ABCD=S△ABC+S△ACD? ? ? ?? ? ? ? ? ?? ? ?121212 3 4 12 5 126 30 36AB BC AC AD( ) 平方單位AB2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論