基于局部線性分析的降維算法研究.pdf_第1頁
已閱讀1頁,還剩63頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、隨著信息、多媒體及數(shù)字化技術(shù)的迅猛發(fā)展,高維數(shù)據(jù)時代隨之到來,并已成為描述客觀世界的一個有力工具,如基因的表達、視頻追蹤、醫(yī)學(xué)圖像處理、高維時間序列分析等,與此同時,傳統(tǒng)的分類、聚類等算法已經(jīng)無法應(yīng)用于高維數(shù)據(jù)的處理中,因此迫切需要尋求一種數(shù)據(jù)降維方法,而流形學(xué)習(xí)的出現(xiàn)為高維數(shù)據(jù)降維提供了一個很好的途徑。
   流形學(xué)習(xí)在十余年的發(fā)展歷程中,在國內(nèi)外眾多學(xué)者的努力下,已經(jīng)開始趨于成熟,并涌現(xiàn)出了許多值得借鑒的方法。例如:等距映射

2、、局部線性嵌(LLE)入以及局部切空間排列(LTSA)算法等。
   LLE及LTSA都基于局部近似可線性化的假設(shè)而提出的非線性降維方法,在真實世界的高維數(shù)據(jù)中可以得到較好的效果。但在很多時候,局部的數(shù)據(jù)往往存在高曲率分布及噪音,而局部的方法對上述情況非常敏感,此時LLE及LTSA就無法獲得正確的低維嵌入,如何解決此類問題成為流形學(xué)習(xí)研究的一個重要分支。
   本文主要針對以上流形學(xué)習(xí)中的重要問題提出相應(yīng)的解決方法:

3、r>   (1)分析局部切空間的幾何性質(zhì),在此基礎(chǔ)上提出一種自適應(yīng)的鄰域選取方法,并將LTSA算法加以改進。
   (2)分析噪音及高曲率對低維空間的影響,并將噪音進行分類,提出一種抗噪能力較強的角度全局嵌入算法。
   (3)以LLE算法為例,對局部可線性化問題展開討論,給出一種近似的可線性化標(biāo)準(zhǔn),同時在源數(shù)據(jù)是稀疏分布的情況下,給出一種基于稀疏嵌入分析的降維方法。
   最后,實驗證實了文中所提出方法的有效

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論