版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> Dead-time Compensation of SVPWM Based on DSP TMS320F2812 for PMSM</p><p> Song Xuelei*, Wen Xuhui, Guo Xinhua, and Zhao Feng</p><p> Institute of Electrical Engineering, Chinese Aca
2、demy of Sciences, Beijing, P.R.China</p><p> E-mail: songxl@mail.iee.ac.cn</p><p> Abstract—The dead-time effect in a three-phase voltage source inverter can result in voltage losses, current
3、waveform distortion and torque pulsation. In order to improve the current waveform and decrease the torque pulsation, this paper proposes a dead-time compensation method of SVPWM. This method divides the iα - iβ plane in
4、to six sectors and compensates the dead-time of SVPWM according to the sector number of stator current vector determined by the α- and β-axis components of the stator curr</p><p> Index Terms--dead-time com
5、pensation,SVPWM,PMSM,TMS320F2812</p><p> I. INTRODUCTION</p><p> Because the permanent magnet synchronous machine (PMSM) has a lot of advantages such as high power density, high efficiency, hi
6、gh torque to inertia ratio, high reliability, et al[1],therefore, the PMSM driving system have been widely used in many application fields, especially in hybrid electric vehicles (HEV) in recentyears[2]-[6]. In the PMSM
7、driving system, the three-phase voltage source inverter is usually adopted and the IGBT and MOSFET are also used because of their fast switchingfrequency</p><p> SVPWM (Space Vector Pulse Width Modulation)
8、is a popular modulation method for three-phase voltage source inverter in motor driving system. In order to improve the current waveform of motors and decrease the torque pulsation of motors, several dead-time compensati
9、on methods of SVPWM have been researched and used in the motor driving system[7]-[11]. Most of the compensation methods are based on the theory of average voltage deviation. In this paper, a novel dead-time compensation
10、method of SVPWM,</p><p> II. DEAD-TIME COMPENSATION METHOD</p><p> Fig.1 shows the topology diagram of the PMSM driving system whose invert unit adopts the three-phase voltage source inverter.
11、 In Fig.1, Q1, Q2, Q3, Q4, Q5 and Q6 are six IGBTs of the three-phase voltage source inverter, and D1, D2, D3, D4, D5 and D6 are their reverse parallel diodes respectively. In addition, the driving switch signals g1, g2,
12、 g3, g4, g5 and g6 are provided by the control unit of the driving system.</p><p> Define the phase currents ia, ib and ic are positive when they flow from the inverter to PMSM, and negative when they flow
13、from PMSM to the inverter. There are eight switch combination states for the six IGBTs in the threephase voltage source inverter, and during the duration of dead-time, there are correspondingly six current combination st
14、ates for three-phase currents ia, ib and ic according to their polarity:</p><p> (1) ia>0, ib<0 and ic<0;</p><p> (2) ia>0, ib>0 and ic<0;</p><p> (3) ia<0,
15、ib>0 and ic<0;</p><p> (4) ia<0, ib>0 and ic>0;</p><p> (5) ia<0, ib<0 and ic>0;</p><p> (6) ia>0, ib<0 and ic>0.</p><p> It is ver
16、y important and difficult to detect the zerocross point or the polarity of each phase current.Traditionally, if the zero-cross point is detect directly through A/D converter of DSP or MCU, bigger measurement deviation wi
17、ll be led especially under the condition of small current, which will result in bigger dead-time compensation deviation and also affect the result of dead-time compensation. Therefore, this paper adopts an indirectly met
18、hod to detect the zero-cross point of phase current</p><p> For convenient analysis and illustration, place the three-phase currents ia, ib, ic in the three-phase static reference frame and the two current
19、components iα , iβ of the current vector in the two-phase static reference frame into the same figure, which is shown in Fig.2. According to the polarity of three-phase currents ia, ib, ic, the iα - iβ plane in the two-p
20、hase static reference frame can be divided into six sectors: I(1), II(2), III(3), IV(4), V(5) and VI(6). </p><p> For each sector in the iα-iβ plane, there is a corresponding dead-time compensation rule. In
21、 other words, once the sector which the current vector belongs to is known, the dead-time effect can be compensated according to the corresponding compensation rule.Therefore, recognizing the sector number of the current
22、 vector is the key problem. </p><p> In this paper, the sector number is determined by thecurrent vector angle φ which can be calculated through the α - and β -axis components of the stator current vector.
23、Equation (1) shows the calculation method of the current vector φ, and equation (2) shows the relationship between the sector number and the current vector φ. </p><p> φ=kπ+arctan(iβ/iα) (k = 0,1)</p>
24、<p> Fig.2. Current Polarity and Current Vector Angle ?</p><p><b> TABLE I</b></p><p> DEAD-TIME COMPENSATION RULES TABLE OF SVPWM</p><p><b> (2)</b&
25、gt;</p><p> For three-phase voltage source inverter, the essence of dead-time compensation is to compensating the voltage deviation. However, in the digital motor driving and control system, voltage regulat
26、ion is implemented through pulse width modulation, that is, through regulating the duty cycle of voltage pulse which has something to do with the pulse width T in one PWM period Tpwm. Therefore, in fact it is the pulse w
27、idth T that is compensated in the practical application. TABLE I shows the dead-time c</p><p> In one word, the proposed dead-time compensation method can be carried out through the following steps:</p&g
28、t;<p> (1) Calculate the current vector angle φ through the α- and β -axis components of the stator current vector in the two-phase static reference frame according to equation (1).</p><p> (2) Dete
29、rmine the sector number through the current vector angle φ according to equation (2).</p><p> (3) Execute the dead-time compensation algorithm according to the compensation rules table TABLE I.</p>&
30、lt;p> III. EXPERIMENTS</p><p> In order to test and verify the proposed dead-time compensation method of SVPWM, experiments are established and made. The experiment system consists of PMSM, three-phase
31、voltage source inverter, control platform, dynamometer, heat dissipation system, et al.The type of IGBT in the inverter is CM600DY-24A produced by Mitsubishi. The control platform is based on DSP TMS320F2812 produced by
32、Texas Instrument.It is a special motor control DSP which has many advantages and can implement high-performan</p><p> For different pulse width compensation values of 0.76μs,1.10μs,1.33μs and 1.60μs, the de
33、ad-time compensation experiments are all made. Fig.3 shows the experiment waveforms of three-phase stator currents and the sector number of stator current vector for different pulse width compensation values, and Fig.4 s
34、hows the corresponding frequency spectrums.</p><p><b> TABLE II</b></p><p> MAIN PARAMETERS OF PMSM USED IN EXPERIMENTS</p><p> (a) No Compensation</p><p&g
35、t; (b) Pulse Width Compensation Value = 0.76μs</p><p> (c) Pulse Width Compensation Value =1.10μs</p><p> (d) Pulse Width Compensation Value =1.33μs</p><p> (e) Pulse Width Comp
36、ensation Value =1.60μs</p><p> Fig.3. Experiment Waveforms of Three-phase Stator Currents</p><p> Here, the CPU frequency of DSP is set at 150MHz,the switching frequency of IGBTs in three-phas
37、e voltage inverter is set at 10kHz, the dead-time is set at 3.2μs through the hardware and software of DSP,the motor control method adopts FOC algorithm, the dc link voltage is set at about 330V,and the phase current is
38、controlled at about 10 A.</p><p> (a) No Compensation</p><p> (b) Pulse Width Compensation Value =0.76μs</p><p> (c) Pulse Width Compensation Value =1.10μs</p><p>
39、(d) Pulse Width Compensation Value =1.33μs</p><p> (e) Pulse Width Compensation Value =1.60μs</p><p> Fig.4. Frequency Spectrum of Stator Current (Phase A)</p><p> It can be seen
40、 from Fig.3 and Fig.4 that, compared with experiment results of no compensation, through the proposed dead-time compensation algorithm the threephase stator current waveforms of PMSM are all improved effectively and the
41、harmonic components of three-phase stator currents are also decreased effectively. Especially when the pulse width compensation value is set at about 1.10μs,compared with experiment results at the other pulse width compe
42、nsation values of 0.76μ,1.33μs and 1.60μs, the</p><p> IV. CONCLUSIONS</p><p> The proposed dead-time compensation method can be implemented easily through software algorithm without any extra
43、 hardware design. So long as the current vector angle φ is determined by the α- and β-axis components of stator current vector in the two-phase static reference frame, the dead-time compensation algorithm can be carried
44、out effectively according to the corresponding dead-time compensation rules table. Finally experiments are established and made on the PMSM driving platform based on D</p><p> REFERENCES</p><p>
45、; [1] Song Chi, Zheng Zhang, Longya Xu, “A Robust,Efficiency Optimized Flux-Weakening Control Algorithm for PM Synchronous Machines”, Proceedings of the 2007 IEEE Industry Applications Conference, pp.1308-1314, 2007.<
46、;/p><p> [2] Zhang Qianfan, Liu Xiaofei, “Permanent Magnetic Synchronous Motor and Drives Applied on a Mid-size Hybrid Electric Car”, Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, pp.1-
47、5, 2008.</p><p> [3] Y.Dai, L.Song, S.Cui, “Development of PMSM Drives for Hybrid Electric Car Applications”, IEEE Transactions on Magnetics, Vol.43, No.1, pp.434-437, 2007.</p><p> [4] Rahman
48、 M.A., “IPM Motor Drives for Hybrid Electric Vehicles”, Proceedings of the 2007 International Aegean conference on Electrical Machines and Power Electronics, pp.109-115, 2007.</p><p> [5] Rahman M.A., “High
49、 Efficiency IPM Motor Drives for Hybrid Electric Vehicles”, Proceedings of the 2007 Canadian Conference on Electrical and Computer Engineering, pp.252-255, 2007.</p><p> [6] Fu Z.X., “Real-time Prediction o
50、f Torque Availability of an IPM Synchronous Machine Drive for Hybrid Electric Vehicles”, Proceedings of the 2005 IEEE International Conference on Electric Machines and Drives, pp.199-206, 2005.</p><p> [7]
51、Wang Gao-lin, Yu Yong, Yang Rong-feng, Xu Dian-guo,“Dead-time Compensation of Space Vector PWM Inverter for Induction Motor”, Proceedings of the CSEE, Vol.28,No.15, pp.79-83, 2008.</p><p> [8] Zeyun Chao, Z
52、hixin Xu, Lili Kong, “Research of Deadtime Compensation in SVPWM Modulator”, Proceedings of ICEMS2008, pp.1973-1975, 2008.</p><p> [9] Zhou L.Q., “Dead-time Compensation Method of SVPWM Based on DSP”, Proce
53、edings of the 4th IEEE Conference on Industrial Electronics and Applications, pp.2355-2358,2009.</p><p> [10] Qingbo Hu, Haibing Hu, Zhengyu Lu, Wenxi Yao, “A Novel Method for Dead-time Compensation Based o
54、n SVPWM”, Proceedings of APEC2005, Vol.3, pp.1867-1870, 2005.</p><p> [11] N.Urasaki, T.Senjyu, K.Uezato, T.Funabashi, “An Adaptive Dead-time Compensation Strategy for Voltage Source Inverter Fed Motor Driv
55、es”, IEEE Transactions on Power Electronics, vol.20, No.5, pp. 1150-1160, 2005.</p><p><b> 外文資料譯文</b></p><p> 基于TMS320F2812 DSP的有死區(qū)時間補償的SVPWM調速永磁同步電動機</p><p> 宋雪蕾*溫徐匯
56、,郭新華和趙峰</p><p> 北京電機工程學會,中國科學院,E - mail:songxl@mail.iee.ac.cn</p><p> 抽象的死區(qū)時間的影響可導致逆變器三相電壓源電壓損失,電流波形畸變和轉矩脈動。為了改善目前的波形,并減少轉矩脈動,提出了一種SVPWM的死區(qū)時間補償方法。這種方法劃分iα –iβ平面為六個扇形區(qū)域,進入和補償的死區(qū)時間的SVPWM矢量根據定子柯部
57、門數目這種方法劃分 iα - iβ 平面為6個扇形區(qū)域,補償的SVPWM死區(qū)時間,根據部門的α數和組件的定子β-軸由定子電流矢量的決定。此外,這一方法可以通過軟件實現完全沒有任何額外的硬件數字信號處理器TMS320F2812的基礎上最后的實驗,建立和作出的,而實驗結果表明,該方法是正確和可行的。</p><p> 關鍵詞:指數條款 - 死區(qū)補償,SVPWM的,永磁同步電機,TMS320F2812</p&
58、gt;<p><b> 引言</b></p><p> 由于永磁同步電機(PMSM的)有很多優(yōu)勢,例如,高功率密度,高效率,高慣性力矩比,高可靠性等[1],因此,永磁同步電機驅動系統已被廣泛應用于許多應用領域,尤其是在最近幾年應用在混合動力(HEV)用電動汽車上[2] - [6]。</p><p> 在永磁同步電機驅動系統,三相電壓源逆變器通常采用
59、的IGBT和MOSFET也因為它們的開關頻率而普遍使用。為了避免短路的同時轉向裝置的直流環(huán)節(jié)發(fā)生的時候,雙方在同一階段的切換,死區(qū)時間通常是在門信號驅動開關的時候。在持續(xù)死區(qū)時間中,相都相同的兩個開關裝置處于關閉狀態(tài)。當時現有的死將導致一系列問題的死區(qū)時間的影響,例如,電壓損失,電流波形畸變和轉矩脈動,特別是在高速條件下的小電流或低。</p><p> 空間矢量脈寬調制(空間矢量脈寬調制)在電機逆變器是一種流行
60、的調制方式為3相電壓源驅動系統。為了提高電動機的電流波形,降低電機轉矩脈動,幾個死區(qū)時間補償的SVPWM方法進行了研究和系統在駕駛汽車[7]-[11]. 大部分的補償辦法是根據偏差理論的平均電壓。</p><p> 在此提出了一種新穎的死區(qū)時間補償的SVPWM方法,這也是基于平均電壓的偏差理論。這種方法劃分iα - iβ平面成6個部分,并彌補了時間的SVPWM根據定子電流矢量根據定子電流部門角度φ。確定的α -
61、和β -定子軸的α組成部分的電流矢量中- β參照系。另外,該方法通過軟件可以實現完全沒有任何額外的硬件設計。最后的實驗,是基于數字信號處理器TMS320F2812的駕駛平臺,測試驗證了提出的PMSM和補償方法。</p><p><b> 死區(qū)補償方法</b></p><p> 圖1顯示了逆變器的拓撲圖的永磁同步電機驅動系統的轉化裝置采用了三相電壓。在圖1,Q1,Q
62、2,Q3,Q4,Q5和Q6有6逆變器的IGBT的三相電壓源,和D1,D2和D3,D4,D5和D6中的反向平行二極管。另外, 開關的驅動信號G1,G2,G3,G4,G5和G6是系統提供的驅動控制裝置。</p><p> 定義相電流Ia,Ib和Ic從永磁同步電動機變頻流向為正,當決定逆變流流向永磁同步電動機為負時。有8個開關的三相電壓源逆變器的六個IGBT組合狀態(tài),并在死區(qū)時間中,有相應的6個當前結合態(tài)對應三相電流
63、IA,IB和IC根據自己的極性:</p><p> (1) ia >0, ib <0 and ic <0; </p><p> (2) ia >0, ib >0 and ic <0; </p><p> (3) ia <0, ib >0 and ic <0;</p><p> (4
64、) ia <0, ib >0 and ic >0;</p><p> (5) ia <0, ib <0 and ic >0;</p><p> (6) ia >0, ib <0 and ic >0.</p><p> 圖1。拓撲圖的永磁同步電機驅動系統</p><p> 零交叉點或
65、每個階段極性電流是非常重要和難以檢測的。照慣例,如果零交叉點檢測單片機直接通過數字信號處理器或/ D轉換器,較大的測量誤差將導致特別是在小電流條件下,這將導致更大的死區(qū)時間補償的偏差,也影響了死區(qū)時間補償結果。因此,本文采用一種間接的方法來檢測零交叉點,是在兩相靜止坐標系上基于電流矢量角φ來檢測的。</p><p> 為方便分析和說明,定義三相電流ia,ib,ic在三相靜止坐標系的兩個電流分量iα,iβ在兩相靜
66、止坐標系電流矢量有相同的數字,這顯示在圖2。根據三相電流ia,ib,ic的極性, 兩相靜止坐標系iα-iβ可分為6個部分:I(1),II(2),III(3),IV(4),V(5) 和VI(6).</p><p> 對于兩相靜止坐標系iα-iβ每個部分,有相應的死區(qū)時間補償規(guī)則。換句話說,一旦該部分的電流矢量屬于已知,死區(qū)時間可以根據相應的補償規(guī)則得到補償。因此,認識到當前的矢量扇區(qū)數是關鍵問題。</p&g
67、t;<p> 本文,該扇形的數目取決于電流矢量角φ,它可以通過計算 α - 和β-軸定子組件的電流矢量來得到。方程(1)顯示當前向量φ的計算方法,和方程(2)顯示了扇形和電流矢量φ之間的數量關系。</p><p> φ=kπ+arctan(iβ/iα) (k = 0,1)</p><p> 圖2 電流極性和電流矢量角φ</p><p> 表一
68、 SVPWM死區(qū)時間補償規(guī)則表</p><p> 對于三相電壓源逆變器,對死區(qū)時間的本質補償,是補償電壓偏差。然而,在數字電機驅動和控制系統中,電壓調節(jié)是通過脈沖寬度調制,即通過調節(jié)占空比脈沖電壓,它是與脈沖寬T在一個脈寬調制的周期Tpwm。因此,事實上它是脈沖寬度T的實際應用中得到補償。表格一顯示死區(qū)時間補償規(guī)則相應的三相電流極性ia,ib,ic和扇區(qū)數目前的矢量在iα-iβ平面??梢钥闯?,對于iα-iβ坐標
69、系的不同扇區(qū),相應的補償值是不同的。</p><p> 一句話,建議的死區(qū)時間補償方法可以進行通過以下步驟:</p><p> 在兩相靜止坐標系根據方程(1)通過α-和β-軸組件計算定子電流矢量的電流矢量角φ。</p><p> 通過電流矢量角φ根據方程(2)確定的部門數目</p><p> 根據表一執(zhí)行的死區(qū)補償算法的補償規(guī)則。&l
70、t;/p><p><b> 三.實驗</b></p><p> 為了測試和驗證所提出的停滯時間補償的SVPWM方法,實驗建立了。該實驗系統由永磁同步電動機,三相電壓源逆變器,控制平臺,功率計,散熱系統等組成。IGBT逆變器類型是CM600DY - 24A,三菱公司生產??刂破脚_是基于DSP TMS320F2812的,德州儀器生產。這是一個特殊的DSP控制的電機,具有許
71、多優(yōu)點,并能實現高性能的電機控制,例如磁場定向控制(磁場定向控制)和DTC(直接轉矩控制)。對控制對象永磁同步電動機用于實驗的主要參數列于表二。</p><p> 對于不同的脈沖寬度補償值0.76μs , 1.10μs , 1.33μs以及1.60 μs的死區(qū)補償的實驗都完成了。圖3顯示了三相定子電流實驗波形和不同的脈沖寬度補償值對定子電流矢量部門數的影響,圖4顯示了相應的頻譜。</p><
72、p> 表二 永磁同步電動機主要技術參數和實驗</p><p><b> (a) 無補償</b></p><p> (b) 脈沖寬度補償值= 0.76μ的</p><p> 脈沖寬度補償值= 1.10μ的</p><p> 脈沖寬度補償值= 1.33μ的</p><p> 脈沖
73、寬度補償值= 1.60μ的</p><p> 圖3。實驗波形三相定子電流</p><p> 在這里,DSP的CPU的頻率為150MHz,IGBT的開關的三相電壓型逆變器頻率為10kHz,通過硬件和DSP軟件死區(qū)時間定為3.2μs,FOC電機控制方法采用的算法,鏈接的直流電壓設置為約330V,和相電流控制在10A。</p><p><b> 無補償&l
74、t;/b></p><p> 脈沖寬度補償值= 0.76μ的</p><p> 脈沖寬度補償值= 1.10μ的</p><p> 脈沖寬度補償值= 1.33μ的</p><p> 脈沖寬度補償值= 1.60μ的</p><p> 圖4。定子電流的頻率(相位譜一)</p><p>
75、 從圖3和圖4可以看出,與不予補償試驗結果相比較,通過擬議的死區(qū)時間補償算法的三相永磁同步電動機定子電流波形都有效地提高,三相定子電流的諧波成分,也有效地降低。尤其是當脈沖寬度補償價值被設置約1.10μs時,相比于其他補償值的寬度脈沖的實驗結果如0.76μs,1.33μs以及1.60 μs,補償結果是最好的,而且三相定子電流的諧波成分是最少的。因此,建議死區(qū)補償的方法是正確和可行的。</p><p><b
76、> 四,總結</b></p><p> 擬議的死區(qū)時間補償方法可以通過軟件算法很容易實現無需任何額外硬件設計。只要目前的矢量角φ是由定子電流矢量在兩相靜止坐標系上的α- 和β-軸組件決定,死區(qū)補償算法可以按相應停滯時間有效地進行。最后的實驗是建立完善了基于DSP TMS320F2812的驅動永磁同步電動機作平臺,其結果表明,該方法可以改善目前的失真,降低扭矩,尤其是當脈沖寬度補償值等于約1.
77、10μs。因此,該方法是正確和可行的。</p><p> REFERENCES</p><p> [1] Song Chi, Zheng Zhang, Longya Xu, “A Robust,Efficiency Optimized Flux-Weakening Control Algorithm for PM Synchronous Machines”, Proceedings o
78、f the 2007 IEEE Industry Applications Conference, pp.1308-1314, 2007.</p><p> [2] Zhang Qianfan, Liu Xiaofei, “Permanent Magnetic Synchronous Motor and Drives Applied on a Mid-size Hybrid Electric Car”, Pro
79、ceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, pp.1-5, 2008.</p><p> [3] Y.Dai, L.Song, S.Cui, “Development of PMSM Drives for Hybrid Electric Car Applications”, IEEE Transactions on Mag
80、netics, Vol.43, No.1, pp.434-437, 2007.</p><p> [4] Rahman M.A., “IPM Motor Drives for Hybrid Electric Vehicles”, Proceedings of the 2007 International Aegean conference on Electrical Machines and Power Ele
81、ctronics, pp.109-115, 2007.</p><p> [5] Rahman M.A., “High Efficiency IPM Motor Drives for Hybrid Electric Vehicles”, Proceedings of the 2007 Canadian Conference on Electrical and Computer Engineering, pp.2
82、52-255, 2007.</p><p> [6] Fu Z.X., “Real-time Prediction of Torque Availability of an IPM Synchronous Machine Drive for Hybrid Electric Vehicles”, Proceedings of the 2005 IEEE International Conference on El
83、ectric Machines and Drives, pp.199-206, 2005.</p><p> [7] Wang Gao-lin, Yu Yong, Yang Rong-feng, Xu Dian-guo,“Dead-time Compensation of Space Vector PWM Inverter for Induction Motor”, Proceedings of the CSE
84、E, Vol.28,No.15, pp.79-83, 2008.</p><p> [8] Zeyun Chao, Zhixin Xu, Lili Kong, “Research of Deadtime Compensation in SVPWM Modulator”, Proceedings of ICEMS2008, pp.1973-1975, 2008.</p><p> [9]
85、 Zhou L.Q., “Dead-time Compensation Method of SVPWM Based on DSP”, Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, pp.2355-2358,2009.</p><p> [10] Qingbo Hu, Haibing Hu, Z
86、hengyu Lu, Wenxi Yao, “A Novel Method for Dead-time Compensation Based on SVPWM”, Proceedings of APEC2005, Vol.3, pp.1867-1870, 2005.</p><p> [11] N.Urasaki, T.Senjyu, K.Uezato, T.Funabashi, “An Adaptive De
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于TMS320F2812的永磁同步電動機直接轉矩控制系統的研究.pdf
- 基于TMS320F2812的永磁同步電動機主軸驅動控制系統的研究.pdf
- 基于TMS320F2812開關磁阻電動機調速系統的研制.pdf
- 基于TMS320F2812的永磁同步電機交流調速系統.pdf
- 基于TMS320F28335的永磁同步電動機矢量控制的研究.pdf
- 基于TMS320F2812矢量控制的雙饋電動機調速研究.pdf
- 變頻調速永磁同步電動機的設計.pdf
- 基于TMS320F2812永磁同步電機調速系統性能研究.pdf
- 調速永磁同步電動機的設計與優(yōu)化.pdf
- 基于死區(qū)補償的永磁同步電動機矢量控制系統研究.pdf
- 單相永磁低速同步電動機調速研究.pdf
- 永磁同步電動機弱磁調速控制.pdf
- 外文翻譯---無電解電容的永磁同步電動機調速系統的特點
- 外文翻譯---無電解電容的永磁同步電動機調速系統的特點
- 外文翻譯---無電解電容的永磁同步電動機調速系統的特點
- 基于TMS320F2812的異步電動機軟起動的研究.pdf
- 基于DSP的永磁同步電動機直接轉矩控制研究.pdf
- 外文翻譯---永磁同步電動機的矢量控制——綜述
- 基于DSP的永磁同步電動機變頻調速系統的研究與設計.pdf
- 基于矢量控制的永磁同步電動機調速過程的仿真
評論
0/150
提交評論