版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、拓?fù)淇臻g維基百科,自由的百科全書漢漢▼上圖為三點(diǎn)集合123上四個(gè)拓?fù)涞睦雍蛢蓚€(gè)反例。左下角的集合並不是個(gè)拓?fù)淇臻g,因?yàn)槿鄙?和3的聯(lián)集23;右下角的集合也不是個(gè)拓?fù)淇臻g,因?yàn)槿鄙?2和23的交集2。拓?fù)淇臻g拓?fù)淇臻g是一種數(shù)學(xué)結(jié)構(gòu),可以在上頭形式化地定義出如收斂、連通、連續(xù)等概念。拓?fù)淇臻g在現(xiàn)代數(shù)學(xué)的各個(gè)分支都有應(yīng)用,是一個(gè)居于中心地位的、統(tǒng)一性的概念。拓?fù)淇臻g有獨(dú)立研究的價(jià)值,研究拓?fù)淇臻g的數(shù)學(xué)分支稱為拓?fù)鋵W(xué)。目錄目錄[隱藏]?1定義
2、o1.1例子?2拓?fù)渲g的關(guān)系?3連續(xù)映射?4等價(jià)定義o4.1閉集o4.2鄰域o4.3閉包運(yùn)算o4.4開核運(yùn)算o4.5網(wǎng)2.X=1234和X內(nèi)六個(gè)子集組成的集族τ=?212231231234會(huì)形成另一個(gè)拓?fù)洹?.X=?(整數(shù)集合)及集族τ等於所有的有限整數(shù)子集加上?自身不是一個(gè)拓?fù)?,因?yàn)椋ɡ纾┧胁话愕挠邢藜系穆?lián)集是無限的,但不是?的全部,因此不在τ內(nèi)。[編輯]拓?fù)渲g的關(guān)系同一個(gè)空間可以擁有不同的拓?fù)?,有些是有用的,有些是平?/p>
3、的,這些拓?fù)渲g可以形成一種偏序關(guān)系。當(dāng)拓?fù)涞拿恳粋€(gè)開集都屬于拓?fù)鋾r(shí),我們說拓?fù)浔韧負(fù)涓?xì),或者說拓?fù)浔韧負(fù)涓?。僅依賴于特定開集的存在而成立的結(jié)論,在更細(xì)的拓?fù)渖弦廊怀闪ⅲ活愃频?,僅依賴于特定集合不是開集而成立的結(jié)論,在更粗的拓?fù)渖弦惨廊怀闪?。最粗的拓?fù)涫怯煽占腿瘍蓚€(gè)元素構(gòu)成的拓?fù)洌罴?xì)的拓?fù)涫请x散拓?fù)?,這兩個(gè)拓?fù)涠际瞧接沟?。在有些文獻(xiàn)中,我們也用大小或者強(qiáng)弱來表示這里粗細(xì)的概念。[編輯]連續(xù)映射拓?fù)淇臻g上的一個(gè)映射,如果它對(duì)于每
4、個(gè)開集的原像都仍然是開集,那么我們稱這個(gè)映射是連續(xù)連續(xù)的。這個(gè)定義符合我們關(guān)于連續(xù)映射不會(huì)出現(xiàn)破碎或者分離的直觀印象。同胚映射同胚映射是一個(gè)連續(xù)的雙射,并且它的逆映射也連續(xù)。兩個(gè)拓?fù)淇臻g之間存在同胚映射,則稱這兩個(gè)空間是同胚的同胚的。從拓?fù)鋵W(xué)的觀點(diǎn)上來講,同胚的空間是等同的。拓?fù)淇臻g作為對(duì)象,連續(xù)映射作為態(tài)射,構(gòu)成了拓?fù)淇臻g范疇拓?fù)淇臻g范疇,它是數(shù)學(xué)中的一個(gè)基礎(chǔ)性的范疇。試圖通過不變量來對(duì)這個(gè)范疇進(jìn)行分類的想法,激發(fā)和產(chǎn)生了整個(gè)領(lǐng)域的研
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 纖維粘合拓?fù)淇臻g與纖維粘貼拓?fù)淇臻g.pdf
- 拓?fù)淇臻g的性質(zhì)
- 拓?fù)淇臻g拓?fù)浣Y(jié)構(gòu)與半拓?fù)淇臻g半拓?fù)浣Y(jié)構(gòu)的區(qū)別與聯(lián)系.pdf
- L-拓?fù)淇臻g和I-fuzzy拓?fù)淇臻g的次分離公理.pdf
- 直覺I—模糊拓?fù)淇臻g.pdf
- fuzzifying拓?fù)淇臻g及直覺fuzzifying拓?fù)淇臻g中一些拓?fù)湫再|(zhì)及范疇性質(zhì)的研究
- 拓?fù)淇臻g上連續(xù)映射的拓?fù)潇?pdf
- Fuzzifying拓?fù)淇臻g及直覺Fuzzifying拓?fù)淇臻g中一些拓?fù)湫再|(zhì)及范疇性質(zhì)的研究.pdf
- 理想余代數(shù)與拓?fù)淇臻g.pdf
- 拓?fù)淇臻g強(qiáng)半正規(guī)絕對(duì)閉性與Fuzzifying雙拓?fù)淇臻g的連通性.pdf
- Fuzzifying半拓?fù)淇臻g的研究.pdf
- Locale與拓?fù)淇臻g的凝聚化.pdf
- 某些拓?fù)淇臻g的收斂性質(zhì).pdf
- 幾類拓?fù)淇臻g的構(gòu)造及其性質(zhì).pdf
- (IC)L-余拓?fù)淇臻g的I(L)誘導(dǎo)化與預(yù)拓?fù)淇臻g中的KKM型定理.pdf
- 模糊拓?fù)淇臻g的一些拓?fù)湫再|(zhì)研究.pdf
- 一類拓?fù)淇臻gσ-θ-復(fù)形的研究.pdf
- 19070.拓?fù)淇臻g及拓?fù)淙褐械慕y(tǒng)計(jì)收斂
- 局部可分度量空間與弱度量拓?fù)淇臻g.pdf
- 拓?fù)淇臻g的廣義映射與廣義開集
評(píng)論
0/150
提交評(píng)論