版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、j I I I I I I I I I I I I II I I I I I I fY 3 3 0 0 5 2 8分類號——1 .1D C ——茸中唯j f 鬣火等博士學(xué)位論文攀撬.。.牛.;,; 一∥”h .o ? j締弩二。之二:學(xué)位申請人姓名: 塑圭受申請學(xué)位學(xué)生類別: 全里舅監(jiān)查申請學(xué)位學(xué)科專業(yè):. 一.叁壁叁至一一 一指導(dǎo)教師姓名..一.蔓墨瞼一.墊燕..博士學(xué)位論文I ) 0 C 1 U 1 { A L D I S S E
2、R ' I 陽。I f J ND i s s e r t a t i o nO n t h ee x i s t e n c ea n dm u l t i pK i r c h h ol i c i t yf f t y po f s o l u t i o n s f o ree q u a t i o n s i nR 3B yT i n“ H u lm g x l H uS u p e r v i s o r :S h
3、u a n g j i e P e n gS p e c i a l t y :P u r eM a t h e m a t i c sR e s e a r c h A r e a :P a r t i a l D i f f e r e n t i a lE q u a t i o nS c h o o lo f M a t h e m a t i c s a n d S t a t i s t i c sC e n t r a l
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Kirchhoff型方程解的存在性與多解性.pdf
- 兩類kirchhoff型方程正解的存在性
- 10578.幾類微分方程邊值問題正解的存在性與多解性
- Kirchhoff方程解的存在性及多解性.pdf
- RN上的Kirchhoff型方程解的存在性和多解性.pdf
- 幾類差分方程正解的存在性
- 幾類微分方程正解的存在性.pdf
- 無界區(qū)域上半線性橢圓方程正解的存在性與多解性.pdf
- 幾類差分方程正解的存在性.pdf
- 超線性Kirchhoff型和漸近線性橢圓方程正解的存在性.pdf
- 幾類差分方程正解存在性研究.pdf
- 33948.幾類梁方程解的存在性與多解性
- 含參數(shù)微分方程正解的存在性和多解性.pdf
- 幾類分?jǐn)?shù)階薛定諤方程多解的存在性.pdf
- 脈沖微分方程邊值問題正解和多解的存在性.pdf
- 周期邊值問題正解的存在性與多解性.pdf
- 幾類擬線性橢圓方程(組)解的存在性與多解性研究.pdf
- 幾類分?jǐn)?shù)階微分方程正解的存在性.pdf
- 21747.幾類kirchhoff型偏微分方程解的存在性研究
- 17646.r3上非線性kirchhoff型方程組正基態(tài)解的存在性
評論
0/150
提交評論