兩類混合元方法及其理論分析.pdf_第1頁
已閱讀1頁,還剩51頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、本文采用H1-Galerkin擴(kuò)展混合元方法數(shù)值模擬線性拋物問題 {(a)pt-▽·(a(x)▽p)=f(x,t),(x,t)∈Ω×(0,T],(b)p(x,t)=0,(x,t)∈()Ω×(0,T],(c)p(x,t)=0,x∈Ω和擬線性拋物問題 {(a)pt-▽·(a(x)▽p)=f(p),(x,t)∈×(x,T],(b)p(x,t)=0,(x,t)∈()Ω×(0,T],(c)p(x,0)=p0(x),x∈Ω.

2、 該方法通過引入兩個中間變量,將原問題化為未知函數(shù)p,梯度函數(shù)λ和通量函數(shù)u的一階方程組,而后將H1-Galerkin混合元方法用于此一階方程組,因而可以同時得到未知函數(shù),未知函數(shù)的梯度及流量函數(shù)的最優(yōu)逼近.該方法的優(yōu)點(diǎn)在于:1.允許有限元空間Vh和Wh具有不同的多項(xiàng)式次數(shù),不必滿足LBB穩(wěn)定性條件;2.可以用于解決復(fù)雜邊界和小粘性參數(shù)問題.通過嚴(yán)格的數(shù)學(xué)分析,建立了該方法的最優(yōu)L2模誤差分析理論.數(shù)值例子進(jìn)一步說明了該方法的有效性.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論