2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩56頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、本文在前人工作的基礎(chǔ)上,對(duì)上個(gè)世紀(jì)80年代發(fā)展起來的波形松弛算法在中立型延遲微分方程數(shù)值解中的應(yīng)用進(jìn)行了仔細(xì)深入的討論。波形松弛算法起源于求解大規(guī)模集成電路問題。由于該算法具有天然的并行性,特別適合高維微分動(dòng)力系統(tǒng)的并行求解,一經(jīng)提出便立刻在國際上引起了強(qiáng)烈反響。20多年來,無論是電子工程專家還是數(shù)學(xué)大師,都對(duì)該算法表現(xiàn)出了濃厚的興趣。作為一種數(shù)值算法,它的很多性質(zhì)是必須從數(shù)學(xué)的角度去考察的。其中最重要的兩個(gè)問題就是算法的收斂性和收斂速

2、度。對(duì)收斂性和收斂速度進(jìn)行研究的意義既在于從數(shù)學(xué)理論的角度來保證算法的有效性,同時(shí)也在于通過數(shù)學(xué)證明和計(jì)算機(jī)仿真來構(gòu)造更好的算法以及改進(jìn)已有的算法。
   波形松弛迭代算法在常微分方程數(shù)值解中最初應(yīng)用于求解線性常微分方程,隨后人們又將其引入到非線性常微分方程以及非中立型延遲常微分方程的求解中。波形松弛迭代算法在中立型延遲微分方程中的應(yīng)用近年來也得到了人們的廣泛關(guān)注,很多學(xué)者都對(duì)其進(jìn)行了深入的研究。經(jīng)過仔細(xì)深入的分析和驗(yàn)證,我們發(fā)

3、現(xiàn)這些已有的收斂性條件和超線性收斂性條件存在著條件過強(qiáng)和不易驗(yàn)證的不足。為此,在本文中我們將著力放松和改善這兩方面的條件。
   第二章中,我們討論了Volterra型泛函微分方程的連續(xù)時(shí)間波形松弛迭代解法的收斂和超線性收斂問題。在假設(shè)分裂函數(shù)滿足時(shí)間依賴和延遲依賴LipschitZ的條件下,得到了更一般、更易驗(yàn)證的收斂和超線性收斂條件。同時(shí),利用得到的誤差估計(jì)式,對(duì)離散時(shí)間波形松弛解法討論了初始區(qū)間加速方法,數(shù)值實(shí)驗(yàn)結(jié)果表明該

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論