版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、南京師范大學博士學位論文曲面嵌入圖的子圖結構及在染色問題中的應用姓名:魯曉旭申請學位級別:博士專業(yè):基礎數(shù)學指導教師:許寶剛200705014一圈的平面圖上定理41G是一個不包含4一面并且不包含相鄰三面的平面圖如果6(G)=4,那么G包含一個謹導出子圖應用定理41結果,我們給出了文章【46】的簡短證明作為引理42并且得到不包含4一圈的平面圖的點蔭度不超過2作為定理43引理42如果G是一個不包含4一圈的平面圖,那么G是4一可選色性的定理4
2、3如果G尼一個不包含4一圈的平面圖,那么B(G)≤2接著我們使用移權法和反證法完成了以下結論的證明;定理44如果G是—個不包含3一圈的平面圖,那么口(G)≤2定理45如果G是一個不包含5一圈的平面圖,那么口(G)≤2定理43,44和45可視為對上面猜想的是否正確的一個正面支持關于平面圖的平方圖,在【76],Wegner提出了以下猜想:猜想511761對于一個平面圖G,艫,叱拿苫,1,訌;篡主71受到Wegner猜想的啟發(fā),我們考慮了不包
3、含3一圈的平面圖的著色性下面是已知的關于平面圖的平方圖的著色性:Thomassen[71l證明了最大度為3的平面圖的平方圖是7一可著色的Heuvel和McGuinness13q證明了x(G2)≤2A(G)25對于任意平面圖GMolloy和Salavatipour嘲把上界減到x(G2)Sr!壘3盟1t78,并有x(G2)≤r!業(yè)31/25如果thatZX(G)≥241Lih,Wang和Zhu152]證明了對于不包含甄一圉子式的平面圖G,x
4、(G2)sZX(G)3如果2≤zx(a)≤3,并且x(G2)≤【!學J1如果△(63≥4我們用g表示不包含三角形的平面圖的集合在這一部分,我們證明了一個Lebesgue形式的定理從而得到口的—個固定結構并且利用這個性質我們找到了這類平面圖的平方圖的可選色性的一個上界,我們稱一個4一面,足特殊的如果,關聯(lián)于兩個2一度點并且稱一個點口是大點如果“是一個15一度點我們稱一個大點口是輕的如果西G2(口)≤a(a)13我們記死(u)和乃(u)分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 嵌入歐拉示性數(shù)非負的曲面的圖的染色問題.pdf
- Snark圖在曲面上嵌入的虧格問題.pdf
- 圖在曲面上嵌入的分類.pdf
- 圖在小虧格曲面上的嵌入研究.pdf
- 圖的曲面嵌入和應用研究.pdf
- 概率方法在超圖二染色問題中的應用.pdf
- 30277.嵌入到歐拉示性數(shù)非負的曲面上的圖的全染色
- 圖能量在腫瘤特征基因提取問題中的應用.pdf
- 特定圖類在曲面上的嵌入個數(shù).pdf
- 圖的可嵌入性和集合系的染色問題.pdf
- FDTD在半空間及周期結構問題中的應用.pdf
- 快速多極子算法在電磁散射問題中的應用.pdf
- 混合遺傳算法在圖著色及MSA問題中的應用.pdf
- 項鏈圖的曲面嵌入虧格分布.pdf
- 曲面嵌入圖的Pfaffian性和圈基問題研究.pdf
- 幾類圖在可定向曲面上的嵌入虧格.pdf
- 關于某些圖在小虧格曲面上的嵌入研究.pdf
- 圖的κ-重染色問題.pdf
- 圖的對稱性與曲面嵌入.pdf
- 圖的幾類染色問題.pdf
評論
0/150
提交評論