2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、用迭代序列逼近非線性算子T的不動(dòng)點(diǎn)問題一直是個(gè)非常活躍的問題,因?yàn)樗泻芏鄬?shí)際的應(yīng)用,如求方程的近似解,優(yōu)化論中求函數(shù)的近似最大(小)值等。因此對(duì)迭代序列的強(qiáng)收斂性問題的研究是很重要的。 時(shí)滯半線性發(fā)展方程的研究起始于上世紀(jì)七十年代,自從Travis和Webb中研究了一類時(shí)滯半線性發(fā)展方程的解的存在性和穩(wěn)定性后,時(shí)滯半線性發(fā)展方程就得到了廣泛的關(guān)注和研究。由于時(shí)滯半線性發(fā)展方程在描述自然現(xiàn)象比沒有時(shí)滯的半線性發(fā)展方程更為有效,因

2、此對(duì)時(shí)滯半線性發(fā)展方程mild解的存在性的研究是具有重要意義的。 本文主要討論改進(jìn)的CQ Ishikawa迭代的強(qiáng)收斂性問題和時(shí)滯半線性發(fā)展方程mild解的存在性問題。所得結(jié)果主要如下: 第一章主要考慮改進(jìn)的CQ Ishikawa迭代的強(qiáng)收斂性問題。 本章利用Xu Hong—Kun引入的投影算子R<,k>改進(jìn)CQ Ishikawa迭代,把相應(yīng)結(jié)果推廣到光滑的一致凸Banach空間,得到了帶誤差項(xiàng)的迭代相應(yīng)的結(jié)果。

3、作為應(yīng)用,我們還得到了m-增生算子零點(diǎn)的迭代逼近。同時(shí)我們運(yùn)用Jong Kyu Kim,Li Gang有關(guān)逼近不動(dòng)點(diǎn)的結(jié)論得到了T為漸近非擴(kuò)張映射時(shí)改進(jìn)的CQ Ishikawa迭代的強(qiáng)收斂性,解決了Xu Hong-Kun提出的問題:對(duì)Banach空間中漸近非擴(kuò)張映射T,CQ Ishikawa迭代有沒有相應(yīng)的強(qiáng)收斂結(jié)論。 第二章考慮時(shí)滯半線性發(fā)展方程mild解的存在性。 本章在無窮維Banach空間X中,在稠定算子A生成的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論