倒向隨機微分方程高精度數(shù)值方法.pdf_第1頁
已閱讀1頁,還剩91頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、其中T為給定正整數(shù),Wt為定義在概率空間(Ω,F(xiàn),P,{Ft}0≤t≤r)上的d-維標(biāo)準(zhǔn)布朗運動,f(t,yt,zt)是一個ft一適應(yīng)過程(0≤t≤T),是一個{Ft)可測的隨機變量.1973年,Bismut[36]研究了線性形式的倒向隨機微分方程;1990年,Pardoux和Peng[25]給出了BSDE的一般形式,并證明了當(dāng)生成函數(shù)滿足Lipschitz條件時倒向隨機微分方程(2)解的存在唯一性定理。此后,倒向隨機微分方程及其解的形

2、式得到了廣泛的研究。在[27]中,Peng證明了正倒向隨機微分方程(FBSDE)與偏微分方程之間的直接聯(lián)系,隨后給出了隨機最優(yōu)控制中的一般最大值原理[26]。1997年,N.E1 Karoui,Peng和Quenez在[15]中通過BSDE獲得了推廣的Black-Scholes公式,使得BSDE理論逐漸應(yīng)用于會融理論中,進而使得BSDE理論具有了更大的活力。經(jīng)過十幾年的發(fā)展,BSDE理論在隨機控制、偏微分方程、金融數(shù)學(xué)、控制論及經(jīng)濟學(xué)等

3、領(lǐng)域得到了廣泛的應(yīng)用。
   BSDE在各個領(lǐng)域的應(yīng)用需要回答的首要問題就是,當(dāng)給定終端條件和生成函數(shù)時如何求解相應(yīng)的BSDE。但是,我們很難求得一般意義下的BSDE的解析解,目前只有當(dāng)生成函數(shù)為幾類特殊的函數(shù)時力可以得到其解析解。對于大多數(shù)情況,我們只能借助于數(shù)值方法來求解BSDE。求解BSDE的數(shù)值方法總共可以分成兩大類。第一類是基于倒向隨機微分方程和偏微分方程之間的關(guān)系而提出的數(shù)值方法。其中比較有代表性的是Ma,Prott

4、er,Yong在[18]中提出的數(shù)值求解FBSDE的四步法,Delarue和Menozzi[9]提出的求解全耦合的FBSDE的正倒向隨機算法。
   第二類方法直接從BSDE本身的特點出發(fā)構(gòu)造數(shù)值格式[3;4;5;7;8;9;14;22;29;32;34;35]。當(dāng)BSDE生成元f不含變量zt時,Chevance[7]提出了基于時空全離散的求解BSDE的數(shù)值方法;當(dāng)BSDE生成元f依賴于變量zt時,Bally[3]提出了基于特殊

5、時間網(wǎng)格的數(shù)值方法,避免了對隨機積分離散時產(chǎn)生的困難。Bender和Denk提出了求解BSDE的正向格式,Peng在[29]中提出了求解BSDE的線性達(dá)代方法。另外,Memin,Peng和xu[22]提出了用隨機游走模型求解BSDE的數(shù)值方法并且給出了收斂性證明。Cvitanic和Zhang[8]給出了應(yīng)用Monte-Carlo方法求解FBSDE的數(shù)值格式,并且在一定的條件下對該格式進行了修正且給出了收斂性分析[32]。在[l4]中,G

6、obet等推廣了Zhang的方法,并給出了強Lp(P≥1)意義下的誤差估計。Bouchard和Touzi[5]基于Zhang的工作提出了求解BSDE的隱格式。Zhao在[34]中提出了求解BSDE的o一格式,并且在[35]中給出了誤差分析。
   我們注意到,現(xiàn)有的絕大部分求解BSDE的數(shù)值方法依賴于對標(biāo)準(zhǔn)布朗運動的近似,但是我們無法對標(biāo)準(zhǔn)布朗運動進行高精度的逼近。因此現(xiàn)有的方法都無法實現(xiàn)對BSDE的高精度求解。雖然應(yīng)用Mont

7、e-Carlo方法可以得到較高的精度,但是Monte-Carlo方法的精度1√N依賴于隨機試驗的次數(shù),這使得高精度求解的計算量變得無法接受。目前,θ一格式可以得到較高的精度,但是θ一格式僅僅是一步格式。
   本文中我們從以下幾個方面研究了求解BSDE的數(shù)值方法:
   ·提出了求解BSDE的多步數(shù)值方法。此方法以及全離散的時空網(wǎng)格。在時間坐標(biāo)軸上,我們用基于多個時間步的Lagrange插值多項式來逼近被積函數(shù),即條件數(shù)

8、學(xué)期望;在空間坐標(biāo)軸上,我們用Gauss-Hermite積分公式和多項式插值方法來近似BSDE的解。理論上,只要滿足一定的穩(wěn)定性條件,多步法可以達(dá)到任意的精度。
   ·多步法半離散格式的誤差分析。我們證明了當(dāng)BSDE的生成元f不含變量Zt時,多步法的半離散格式收斂性并且證明了半離散格式的收斂階依賴于求解某一時間層時用到的時間步數(shù)。
   ·多步法的高效率格式。雖然求解BSDE的多步法可以達(dá)到很高的精度,但是高精度的要求

9、也使數(shù)值求解的計算量變得難以接受。其原因是,當(dāng)應(yīng)用Gauss-Hermite積分公式近似條件數(shù)學(xué)期望時并沒有考慮到標(biāo)準(zhǔn)布朗運動的性質(zhì)。換言之,在構(gòu)造數(shù)值格式的同時,我們應(yīng)當(dāng)考慮如何更好的模擬標(biāo)準(zhǔn)布朗運動。因此,我們構(gòu)造了一類新的離散隨機過程,稱為Gauss-Hermite過程,并基于此對多步法進行了改進,提出了求解BSDE的高效多步方法。這種方法在使得計算量大大縮減的同時能夠與多步法保持完全相同的精度。
   ·高效多步方法的誤

10、差分析。通過倒向追蹤高效多步法的誤差傳播過程,我們得到了如下結(jié)論:如果我們依據(jù)某些條件對時空網(wǎng)格進行適當(dāng)比例的縮小,高效多步法與多步法具有完全相同的數(shù)值精度,同時計算量得到了大規(guī)模的縮小。
   ·多步法的并行計算。為了進一步提高計算效率,我們研究了多步格式的并行化。在某一時間層求解時,我們將整體的工作量平均分配給若干個進程同時計算,全部完成之后再由控制進程將所有的解收集起來,得到本時間層上的所有數(shù)值解。因為多步法和高效多步法均

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論