基于格子Boltzmann模型的微管道混合邊界效應的研究.pdf_第1頁
已閱讀1頁,還剩77頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、微管內流體的運動是自然界中的一種常見現象,在電子設備、微機電系統(tǒng)、航空工業(yè)、生物醫(yī)療等許多領域都有廣泛應用。因此,研究微管內流體的運動具有非常重要的意義。 微管內部結構非常復雜,描述流體運動的控制方程具有非線性特征,很難用傳統(tǒng)實驗和理論方法對它進行精確研究。隨著計算機和計算流體動力學的發(fā)展,直接對控制方程進行數值研究成為可能。只是由于網格精度和邊界穩(wěn)定等問題的存在,一般計算流體力學的應用和發(fā)展受到一定的限制。 格子Bol

2、tzmann方法(Lattice Boltzmann method)是一種簡化的基于微觀尺度層次的計算模型,經過多尺度展開,可以推導出流體力學的宏觀方程。該方法容易處理微流動中的界面動力學和復雜邊界問題,并具有節(jié)省計算機存儲空間、不存在截斷誤差、克服計算不穩(wěn)定性、邊界條件易處理和適合做大規(guī)模并行運算等優(yōu)點,特別適用于研究微流動問題。本文應用格子Boltzmann方法對微流動的混合邊界效應進行了探討。 主要工作如下: ●介

3、紹了格子Boltzmann方法的起源、發(fā)展和研究現狀。給出了連續(xù)Boltzmann方法到格子Boltzmann方程推導過程,并利用Chapman-Enskog展開及Taylor展開等數學方法,從格子Boltzmann方程恢復出流體力學的Navier-Stokes方程。介紹Luo和Girimaji提出的二元流混合模型。 ●本文重點討論了格子Boltzmann方法應用中的幾種典型的邊界條件,包括反彈邊界、反射邊界、外推格式和周期邊界

4、,二維的壓力和速度邊界,以及三維的邊界處理。特別是針對本文的微管流體仿真,分析了不同邊界的使用,以及混合邊界的設置問題。 ●本文提出了管道內混合邊界的處理方法。分別在二維和三維微管道中模擬了混合邊界對流體運動產生的影響。研究發(fā)現當混合邊界的比值處于黃金分割點附近時,流體波動現象最明顯。利用Luo和Girimaji提出的二元流混合模型模擬了混合邊界對T型微管道中液一液混合的影響,結論同樣證實,當混合邊界的比值處于黃金分割點附近時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論