版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、估計(jì)是統(tǒng)計(jì)學(xué)的兩大任務(wù)之一,而對(duì)于總體分布的參數(shù)進(jìn)行估計(jì)已有大量的研究。在用樣本數(shù)據(jù)對(duì)參數(shù)進(jìn)行估計(jì)時(shí),往往由于計(jì)算公式很復(fù)雜而無法得到我們想要的結(jié)果,這時(shí)攻克計(jì)算難題顯得尤為重要。由Dempster等人于1976年提出的EM算法是一種迭代計(jì)算方法。在保證計(jì)算結(jié)果收斂性的前提下,它在處理一些復(fù)雜計(jì)算上具有良好的效果。目前主要應(yīng)用于缺失數(shù)據(jù)、分組數(shù)據(jù)、截尾數(shù)據(jù)和截?cái)鄶?shù)據(jù)等情形下總體分布的參數(shù)估計(jì)以及一些數(shù)學(xué)模型的參數(shù)估計(jì)。 本文研究
2、的是雙參數(shù)指數(shù)分布的參數(shù)估計(jì)。在處理數(shù)據(jù)時(shí),將缺失數(shù)據(jù)、分組數(shù)據(jù)、截尾數(shù)據(jù)和截?cái)鄶?shù)據(jù)等幾種情形進(jìn)行了很好的融合,即在觀測(cè)截尾數(shù)據(jù)的同時(shí)考慮到有缺失數(shù)據(jù)的情況,同時(shí)又將缺失數(shù)據(jù)進(jìn)行分組得到分組數(shù)據(jù),然后又研究了截?cái)鄶?shù)據(jù)的情形。 在估計(jì)雙參數(shù)指數(shù)分布位置參數(shù)時(shí),一律用觀測(cè)樣本的最小值作為它的極大似然估計(jì),而估計(jì)雙參數(shù)指數(shù)分布尺度參數(shù)時(shí),方法比較多樣,主要有以下兩種: (1)填充算法:用已觀測(cè)到的數(shù)據(jù)的和的均值對(duì)缺失數(shù)據(jù)進(jìn)行了
3、填充,討論了截尾缺失數(shù)據(jù)下雙參數(shù)指數(shù)分布尺度參數(shù)的極大似然估計(jì),且討論了該估計(jì)的無偏性和大樣本性質(zhì)。 (2)EM算法:一般情況下,分組數(shù)據(jù)的分組依據(jù)即每組的起始時(shí)刻和終了時(shí)刻都是預(yù)先給定的,而本文將已觀測(cè)到的數(shù)據(jù)作為數(shù)據(jù)分組的起始時(shí)刻和終了時(shí)刻,然后利用EM算法給出了尺度參數(shù)的估計(jì)。 文中主要結(jié)論通過以下定理的形式給出: 定理1:在假定第一個(gè)觀測(cè)值不丟失的情況下,μ=X(1)= min(X1,X2,…,Xn)為雙
4、參數(shù)指數(shù)分布位置參數(shù)μ的極大似然估計(jì);()為雙參數(shù)指數(shù)分布尺度參數(shù)β的無偏估計(jì)且其方差為()。其中Zj的定義為公式(5),CknPk的定義為公式(4)。 定理2:()其中N(0,β2/p)表示均值為零,方差為β2/p的正念分布,()表示依分布收斂。定理3:在截尾缺失數(shù)據(jù)情形下,不考慮截尾時(shí)刻與無窮大時(shí)刻組成的區(qū)間,雙參數(shù)指數(shù)分布的尺度參數(shù)的EM算法的計(jì)算公式為:其中μ取它的極大似然估計(jì)X(1)=min(X1,X2,…,Xn)。
5、 定理4:在截尾缺失數(shù)據(jù)情形下,考慮截尾時(shí)刻與無窮大時(shí)刻組成的區(qū)間,雙參數(shù)指數(shù)分布的尺度參數(shù)的EM算法的計(jì)算公式為:其中μ取它的極大似然估計(jì)X(1)=min(X1,X2,…,Xn)。 定理5:在數(shù)據(jù)截?cái)嗉粗辽儆幸粋€(gè)區(qū)間觀測(cè)數(shù)據(jù)個(gè)數(shù)未知情形下,考慮截尾時(shí)刻與無窮大時(shí)刻組成的區(qū)間的觀測(cè)個(gè)數(shù)未知且個(gè)數(shù)服從負(fù)二項(xiàng)分布,雙參數(shù)指數(shù)分布的尺度參數(shù)的EM算法的計(jì)算公式為: 其中P的定義為公式(17),μ取它的極大似然估計(jì)X(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 定數(shù)截尾缺失數(shù)據(jù)下雙參數(shù)指數(shù)分布的統(tǒng)計(jì)推斷.pdf
- 分組數(shù)據(jù)下兩參數(shù)指數(shù)分布的參數(shù)估計(jì).pdf
- 混合指數(shù)分布的參數(shù)估計(jì).pdf
- 雙側(cè)刪失下指數(shù)分布的參數(shù)估計(jì).pdf
- 缺失數(shù)據(jù)下特殊指數(shù)分布參數(shù)的無偏估計(jì).pdf
- 基于分組數(shù)據(jù)的兩參數(shù)指數(shù)分布參數(shù)估計(jì)的性質(zhì).pdf
- 定時(shí)截尾缺失數(shù)據(jù)下指數(shù)分布的統(tǒng)計(jì)推斷.pdf
- 兩參數(shù)廣義指數(shù)分布的參數(shù)估計(jì)與數(shù)值模擬.pdf
- 定時(shí)長隨機(jī)監(jiān)測(cè)下混合指數(shù)分布的參數(shù)估計(jì).pdf
- 一類特殊雙參數(shù)指數(shù)分布的參數(shù)估計(jì)和假設(shè)檢驗(yàn).pdf
- 雙參數(shù)指數(shù)分布參數(shù)的若干估計(jì)的優(yōu)劣性比較.pdf
- 指數(shù)分布尺度參數(shù)的區(qū)間估計(jì).pdf
- GBVE型指數(shù)分布的參數(shù)估計(jì)及最優(yōu)設(shè)計(jì).pdf
- 刪失下雙參數(shù)指數(shù)分布中Bayes估計(jì)與收縮估計(jì)的比較.pdf
- 多元混合指數(shù)分布參數(shù)的優(yōu)化估計(jì).pdf
- 關(guān)于雙參數(shù)指數(shù)分布的若干討論.pdf
- 雙指數(shù)分布位置參數(shù)的經(jīng)驗(yàn)Bayes估計(jì)和檢驗(yàn)問題.pdf
- 指數(shù)分布的一些特殊問題及在若干情形下的參數(shù)估計(jì).pdf
- 定數(shù)截尾加速壽命試驗(yàn)下指數(shù)分布模型的區(qū)間估計(jì).pdf
- 截尾情形下指數(shù)分布的Bayes統(tǒng)計(jì)推斷.pdf
評(píng)論
0/150
提交評(píng)論