版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Since the appearance of the neural networks, the industrial environment has jumped a big step toward the future, most of the processes that acquired a human supervising in the past, has now their own learning algorithms,
2、 one of the most influenced fields by this is the Robots, I the near past most neural algorithms developed were for robots control, the actual objective is to create a robot that could have the agility of human, and this
3、 could be accomplished in the near future due to the fast developing of microprocessors, and the appearance of supper computers. One of the most challenging application in this field is the visual control,knowing t
4、hat it's done in real time, make it even more difficult than any of the other method, most of these algorithms use two visual sensors to provide the system with a 3D scene, that contains the necessary data to such as the
5、 position of the objects and their shape, which is identical to the work of he human eyes. In this thesis we will discuss and realize one method that uses the neural network to generate the tasks that the robot shou
6、ld do. In the first chapter we present a general view on the application of neural networks for controlling robots com, and as the control is visual we need to develop an image processing algorithm to receive the necessa
7、ry data from the sensors, and this is the subject of the second chapter. The chapter 3 discuss the neural networks,their principles and some of their most important training algorithms. In chapter 4 we discuss the proble
8、m of coupling the visual system with the robot,and implement the command system that we propose, the next part was truly the most interesting, it was some kind of challenge, the chapter 5 discuss the realization of two 4
9、 degrees of freedom robot arms, that could be controlled from PC which make it easier to implement the controller we want, and the last part is the discuss the results of our design, and take a final conclusion,on the sy
10、stem, while the appendices A contain several issues in programming with the visual c++, B present the hardware issues, such as the sensors calibration...etc, C encloses the list of the tables and the figures, while D con
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于神經(jīng)網(wǎng)絡(luò)的多水下機(jī)器人協(xié)調(diào)控制方法研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的機(jī)器人手眼系統(tǒng)位置協(xié)調(diào)控制.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的機(jī)器人控制研究.pdf
- 二關(guān)節(jié)機(jī)器人用于藝術(shù)雕刻的研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的剛-柔關(guān)節(jié)機(jī)器人自適應(yīng)反步控制.pdf
- 基于神經(jīng)網(wǎng)絡(luò)水下機(jī)器人的容錯(cuò)控制.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的機(jī)器人運(yùn)動(dòng)控制算法研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的仿人機(jī)器人步行控制研究.pdf
- 基于遞歸神經(jīng)網(wǎng)絡(luò)的機(jī)器人建模與控制研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的機(jī)器人軌跡魯棒跟蹤控制.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的機(jī)器人模型辨識(shí)與控制研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的移動(dòng)機(jī)器人控制研究.pdf
- 基于視覺的多機(jī)器人協(xié)調(diào)控制研究.pdf
- 基于Q學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)的雙足機(jī)器人控制.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的上下料機(jī)器人視覺伺服控制研究.pdf
- 基于遺傳算法的機(jī)器人神經(jīng)網(wǎng)絡(luò)控制系統(tǒng).pdf
- 基于PlayerStage的多機(jī)器人協(xié)調(diào)控制研究.pdf
- 基于模糊神經(jīng)網(wǎng)絡(luò)的上肢康復(fù)機(jī)器人智能控制.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的移動(dòng)機(jī)器人軌跡跟蹤控制.pdf
- 機(jī)器人遙操作系統(tǒng)神經(jīng)網(wǎng)絡(luò)控制.pdf
評(píng)論
0/150
提交評(píng)論