馮.卡門旋轉(zhuǎn)流方程及馬丟方程的同倫分析_第1頁
已閱讀1頁,還剩40頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、上海交通大學(xué)碩士學(xué)位論文馮.卡門旋轉(zhuǎn)流方程及馬丟方程的同倫分析姓名:楊承申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):船舶與海洋結(jié)構(gòu)物設(shè)計(jì)制造指導(dǎo)教師:廖世俊20031201ABSTRACTIn this thesis, two kinds of differential equations are analysed by the Homotopy Anal- ysis Method(HAM), which is a kind of analytic met

2、hod proposed to give analytic solutions for nonlinear problems.Firstly, Von K´ arm´ an swirling viscous flow , one of the classic problems in fluid mechanics is solved by the HAM. Von K´ arm´ an swirl

3、ing viscous flow is a set of coupled ordinary differential equations with strong nonlinearity, the analytic solutions given by HAM in this thesis, which is the first purely analytic solution for this classic problem, con

4、verge well and agree well with numerical solutions.Secondly, Mathieu Equation, a linear ordinary differential equations with varia- tional coefficient, is solved by HAM. It is also very difficult for other methods to giv

5、e analytic solutions of this linear equation. In this thesis, the analytic expression of the Eigenvalue and Eigenfunction of Mathieu Equation is given by HAM which agree well with numerical results and the linear problem

6、 homotopy-Pad´ e technique is employed to enhance the convergence.So the efficiency of HAM is proved by the successful analysis of these two different equations and the its application field is broadened.Key Words V

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論