非線性發(fā)展方程的求解及對(duì)稱研究.pdf_第1頁(yè)
已閱讀1頁(yè),還剩44頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、19世紀(jì)末人們開(kāi)始研究非線性偏微分方程(PDEs),從1960年開(kāi)始,非線性研究迅速發(fā)展,非線性方程的研究成為一門新興的交叉性學(xué)科,研究?jī)?nèi)容也越來(lái)越豐富。其中一項(xiàng)很重要的成就是創(chuàng)造了求得PDEs的精確解尤其是孤立波解的各種方法,如Dauboux變換法;齊次平衡法;反演散射法;Hirota雙線性法;Tanh函數(shù)法;同宿測(cè)試函數(shù)法[1];F-展開(kāi)法[6]等[9]。這些方法已經(jīng)成功的求得了一批非線性演化方程的精確解[30]。本文在對(duì)孤立子理論

2、及各種非線性發(fā)展方程解法的學(xué)習(xí)研究基礎(chǔ)上,對(duì)幾種求解方法進(jìn)行了應(yīng)用與改進(jìn),獲得了幾種PDEs的新的精確解。本文共有四章,內(nèi)容概括如下:
   第一章介紹孤立子的研究背景及其發(fā)展,并對(duì)PDEs的可積性進(jìn)行了概述,分別介紹幾種求解非線性發(fā)展方程的方法。
   第二章首先用同宿測(cè)試函數(shù)法,引入測(cè)試函數(shù),確定測(cè)試函數(shù)中待定常數(shù),進(jìn)而求出(2+1)維Boussinesq方程的解,得到了該方程的新的精確解,之后對(duì)同宿測(cè)試函數(shù)法進(jìn)行擴(kuò)

3、展,獲得了(2+1)維Boussinesq方程的新解。應(yīng)用計(jì)算機(jī)符號(hào)軟件matlab畫(huà)出解的圖像。其次用F-展開(kāi)法對(duì)上述方程求解,利用輔助函數(shù)的解獲得方程的解,豐富了解的結(jié)構(gòu)。最后用tanh函數(shù)展開(kāi)法的擴(kuò)展方法求解了Hirota-Satsuma方程組,應(yīng)用tanh函數(shù)展開(kāi)法的另一種擴(kuò)展方法求解了MEW方程。
   第三章詳細(xì)介紹了lie群理論。首先對(duì)lie群概念及重要定理進(jìn)行闡述,介紹如何利用lie群理論對(duì)方程進(jìn)行約化,求解。之

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論