畢業(yè)論文--函數(shù)一致連續(xù)性的判斷及應(yīng)用_第1頁
已閱讀1頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  題 目:函數(shù)一致連續(xù)性的判斷及應(yīng)用 </p><p>  姓 名:雷會(huì)娟 </p><p>  學(xué) 號(hào):201004010091 </p><p>  學(xué) 院:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院 &

2、lt;/p><p>  專 業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué) </p><p>  年級(jí)班級(jí):2010級(jí)1班 </p><p>  指導(dǎo)教師:鄭遠(yuǎn)平 </p><p>  2014年 5月17日</p><p>  畢業(yè)論文(設(shè)計(jì))

3、作者聲明</p><p>  本人鄭重聲明:所呈交的畢業(yè)論文是本人在導(dǎo)師的指導(dǎo)下獨(dú)立進(jìn)行研究所取得的研究成果。除了文中特別加以標(biāo)注引用的內(nèi)容外,本論文不包含任何其他個(gè)人或集體已經(jīng)發(fā)表或撰寫的成果作品。</p><p>  本人完全了解有關(guān)保障、使用畢業(yè)論文的規(guī)定,同意學(xué)校保留并向有關(guān)畢業(yè)論文管理機(jī)構(gòu)送交論文的復(fù)印件和電子版。同意省級(jí)優(yōu)秀畢業(yè)論文評(píng)選機(jī)構(gòu)將本畢業(yè)論文通過影印、縮印、掃描等方式

4、進(jìn)行保存、摘編或匯編;同意本論文被編入有關(guān)數(shù)據(jù)庫進(jìn)行檢索和查閱。</p><p>  本畢業(yè)論文內(nèi)容不涉及國(guó)家機(jī)密。</p><p>  論文題目:函數(shù)一致連續(xù)性的判斷及應(yīng)用</p><p>  作者單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院</p><p><b>  作者簽名:</b></p><p>  2014

5、年 5月17日 </p><p><b>  目 錄</b></p><p><b>  摘 要1 </b></p><p><b>  引言2</b></p><p>  1. 函數(shù)連續(xù)與函數(shù)一致連續(xù)的關(guān)系3</p><p>  1.1

6、函數(shù)連續(xù)性與函數(shù)一致連續(xù)性的區(qū)別3</p><p>  1.2 函數(shù)連續(xù)性與函數(shù)一致連續(xù)性的聯(lián)系5</p><p>  2. 一元函數(shù)一致連續(xù)的判斷和應(yīng)用6</p><p>  2.1 一元函數(shù)在有限區(qū)間上的一致連續(xù)性6</p><p>  2.2 一元函數(shù)在無限區(qū)間上的一致連續(xù)性8</p><p>  

7、2.3 一元函數(shù)在任意區(qū)間上的一致連續(xù)性10</p><p>  3. 二元函數(shù)一致連續(xù)性15</p><p>  3.1 二元函數(shù)一致連續(xù)的概念15</p><p>  3.2 二元函數(shù)的一致連續(xù)性的判斷及應(yīng)用15</p><p><b>  結(jié)束語16</b></p><p>&l

8、t;b>  參考文獻(xiàn)16</b></p><p><b>  致謝18</b></p><p>  函數(shù)一致連續(xù)性的判斷與應(yīng)用</p><p>  摘 要:本文從函數(shù)連續(xù)和一致連續(xù)的概念和關(guān)系出發(fā),對(duì)函數(shù)的一致連續(xù)的定義進(jìn)行了深入的分析,之后主要對(duì)一元函數(shù)在不同類型的區(qū)間進(jìn)行了探討、總結(jié)和應(yīng)用,還將部分一元函數(shù)的一致連續(xù)

9、的判定方法推廣到二元函數(shù),使大家對(duì)函數(shù)一致連續(xù)的內(nèi)涵有更全面的理解和認(rèn)識(shí). </p><p>  關(guān)鍵詞:連續(xù);一致連續(xù);連續(xù)函數(shù) </p>&l

10、t;p>  The judgment and Application of Uniformly Continuous Function</p><p>  Abstract: This article from the concept of uniformly continuous function is continuous and relation. the definition of uniforml

11、y continuous of function carried on the thorough analysis, then we research the methods of decisions of uniformly continuous function in different kinds of intervals. Moreover, we extend some of the results to function o

12、f two variables in different region. </p><p>  Key words: Continuity; Uniformly Continuity; Continuity Function </p><p>  引言

13、 </p><p>  函數(shù)一致連續(xù)性是數(shù)學(xué)分析的一個(gè)重要概念,理解函數(shù)的一致連續(xù)性的概念和熟練掌握判斷函數(shù)一致連續(xù)的方法是學(xué)好這一理論的關(guān)鍵.函數(shù)一致連續(xù)不僅僅是閉區(qū)間上連續(xù)函數(shù)黎曼可積的基礎(chǔ),而且與以后的含參量積分、函數(shù)項(xiàng)積分等概念有著密切的聯(lián)系.所以,找出函數(shù)一致連續(xù)性的條件是數(shù)

14、學(xué)分析中的一個(gè)重要內(nèi)容.因此,本文探討了函數(shù)一致連續(xù)性的判定方法,基本性質(zhì)及其應(yīng)用,并且對(duì)函數(shù)一致連續(xù)性的判定方法,基本性質(zhì)及各個(gè)應(yīng)用進(jìn)行了深入研究,目的是使讀者能更好的掌握函數(shù)的一致連續(xù)性.使大家對(duì)函數(shù)一致連續(xù)的內(nèi)涵有更全面的理解和認(rèn)識(shí).</p><p>  數(shù)學(xué)概念對(duì)數(shù)學(xué)的發(fā)展是不可估量的,函數(shù)的概念對(duì)于數(shù)學(xué)發(fā)展的影響,可以說是貫穿古今.函數(shù)概念的發(fā)展歷史,不僅有助于我們提高對(duì)函數(shù)概念來龍去脈認(rèn)識(shí)的清晰度,而

15、且能幫助我們領(lǐng)悟數(shù)學(xué)概念及數(shù)學(xué)的學(xué)習(xí)有很大幫助.17世紀(jì)中葉,笛卡爾引入變數(shù)的概念,制定了解析幾何學(xué),從而打破了局限于方程的未知數(shù)的理解;19世紀(jì)中期,法國(guó)數(shù)學(xué)家黎曼吸收了萊布尼茨,達(dá)郎貝爾和歐拉的成果,第一次提出了函數(shù)的定義;隨后,牛頓,萊布尼茨分別獨(dú)立的建立了微分學(xué)說.這期間,隨著數(shù)學(xué)的發(fā)展,各種函數(shù)大量出現(xiàn),但函數(shù)還沒有給出一個(gè)一般的定義.國(guó)內(nèi)的主要理論成書于十九世紀(jì).它逐步形成一門邏輯嚴(yán)密,系統(tǒng)完整的學(xué)科,而且在各個(gè)方面獲得了十

16、分廣泛的應(yīng)用,成為處理有關(guān)連續(xù)量基礎(chǔ)的強(qiáng)有力的工具.</p><p>  文獻(xiàn)1,2,5作為論文的基礎(chǔ),主要是參考了函數(shù)一致連續(xù)的概念和幾個(gè)基本的判別方法。文獻(xiàn)3,4,6主要從例題的角度給出大量判斷函數(shù)一致連續(xù)和非一致連續(xù)的判別方法。文獻(xiàn)7討論了函數(shù)一致連續(xù)的幾個(gè)充分條件。文獻(xiàn)8就幾種特殊函數(shù)的一致連續(xù)性進(jìn)行了詳細(xì)的探討,得到了滿足Lipchitz條件的函數(shù),周期函數(shù)等一些特殊函數(shù)的一致連續(xù)性的判別方法。文獻(xiàn)9討

17、論了函數(shù)一致連續(xù)性的幾個(gè)判別方法,比如康拓定理以及定義在不同區(qū)間上的函數(shù)一致連續(xù)性的判別方法。文獻(xiàn)10討論了二元函數(shù)的一致連續(xù)性的概念及一些判別方法。</p><p>  函數(shù)連續(xù)與函數(shù)一致連續(xù)的關(guān)系 </p><p>  1.1函數(shù)連續(xù)與函數(shù)一致連續(xù)的區(qū)別 </p><p>  1.1.1函數(shù)連續(xù)的局部性

18、 </p><p>  定義1 函數(shù)在某內(nèi)有定義,對(duì)于,,使得當(dāng)時(shí),有 ,那么稱函數(shù)在點(diǎn)處連續(xù). </p><p>  這里不僅和有關(guān),而且還和點(diǎn)有關(guān),即對(duì)于不同的,一般來說是不同的.這樣是不是意味著 在點(diǎn)的鄰域內(nèi)連續(xù)呢?或者說它的圖象在此鄰域上連綿不斷呢? 答

19、案是否定的,如函數(shù)只在連續(xù);函數(shù)僅在兩點(diǎn)連續(xù);又如函數(shù) </p><p>  容易證明這個(gè)函數(shù)在任意點(diǎn)是連續(xù)的. </p><p>  上面的例子表明“連續(xù)”僅僅是一個(gè)局部概念,而不能從字面意

20、思去理解 在點(diǎn)連續(xù).當(dāng)且僅當(dāng) 在的鄰域內(nèi)每一點(diǎn)都連續(xù),才能說在的鄰域內(nèi)連續(xù).因此,函數(shù)在點(diǎn)處連續(xù)的定義不能完全反映“連續(xù)”二字的本意,這的確是個(gè)遺憾.但是,如果在連續(xù)點(diǎn)處函數(shù)值,那么上述例外情形就不會(huì)發(fā)生了.有如下定理: </p><p>  定理1 設(shè)在連續(xù),且,則一定存在的某個(gè)鄰

21、域,使 在此鄰域內(nèi)連續(xù). </p><p>  證明 因在點(diǎn)連續(xù),即,都有 </p><p>  現(xiàn)對(duì),由上式顯

22、然有 </p><p>  又,當(dāng)充分小時(shí),由局部保號(hào)性有 </p><p>  >>0, </p><p>  即,從而有 </p>&

23、lt;p>  可見在連續(xù),由的任意性,知在的鄰域內(nèi)連續(xù). </p><p>  因此,函數(shù)的連續(xù)性是一種按點(diǎn)而言的連續(xù)性,它僅僅反映的是函數(shù)在區(qū)間上一點(diǎn)附近的局部性質(zhì),而不能判斷在某一區(qū)間上的整體性質(zhì). </p><p>  1.1.2函數(shù)一致連續(xù)的整體性

24、 </p><p>  定義2 設(shè)函數(shù)在區(qū)間上有定義,若對(duì),,,只要,就有 </p><p

25、>  則稱函數(shù)在區(qū)間上一致連續(xù). </p><p> ?、?定義中的“一致”指的是什么意思呢?與函數(shù)在區(qū)間上連續(xù)的定義進(jìn)行比較,不難發(fā)現(xiàn),在函數(shù)連續(xù)定義中的,不僅僅依賴于,還依賴于點(diǎn)在區(qū)間中的位置,即.而在上一致連續(xù)是指,存在這樣的它只與有關(guān)而與在區(qū)間中的位置無關(guān),即.可以說,如果函數(shù) 在區(qū)間上連續(xù),即對(duì)于任意給定的

26、正數(shù),對(duì)上的每一點(diǎn),都能分別找到相應(yīng)的正數(shù),使得對(duì)上的任意一點(diǎn),只要,就有,其中;而對(duì)于函數(shù)的一致連續(xù)性來說,對(duì)于同一個(gè)而言,當(dāng)在上變動(dòng)時(shí),的大小不變,即僅僅依賴于.可見,“一致”指的是存在在I上所有點(diǎn)的公共,與有關(guān),與無關(guān). </p><p>  ⑵ 函數(shù)一致連續(xù)的實(shí)質(zhì)是指當(dāng)在這個(gè)區(qū)間的任意兩點(diǎn)

27、越靠近,它們對(duì)應(yīng)函數(shù)值差的絕對(duì)值就越小.更直觀的是說,可以任意小,即對(duì)于任意的 ,只要時(shí),就有. </p><p>  這里可能會(huì)產(chǎn)生這樣的疑問:既然對(duì)中每一個(gè)點(diǎn)都能找出相應(yīng)的,那么取這些的最小者或者是下確界作為正數(shù),不就使其與點(diǎn)無關(guān)了嗎?事實(shí)上,這不一定能辦到.因?yàn)閰^(qū)間中有無窮多個(gè)點(diǎn),從而也對(duì)應(yīng)著無窮多個(gè)正數(shù),這無窮多個(gè)正數(shù)卻

28、未必有最小的正數(shù)或下確界. </p><p>  所以,在區(qū)間上一致連續(xù)反映出在上各點(diǎn)的“連續(xù)”程度是否步調(diào)“一致”這樣一個(gè)整體的性質(zhì). </p><p>  1.2 函數(shù)連續(xù)性與函數(shù)一致連續(xù)性的聯(lián)系

29、 </p><p>  定理2 函數(shù)在區(qū)間上一致連續(xù),則在上連續(xù). </p><p>  這個(gè)定理顯然成立,只須將其中的一個(gè)點(diǎn)(或)固定即可,但是在上連續(xù),函數(shù)在區(qū)間上卻不一致連續(xù). </p><p>  例1 證明函數(shù)在內(nèi)不一

30、致連續(xù)(盡管它在內(nèi)每一點(diǎn)都連續(xù)). </p><p>  證明 取,對(duì)(充分小,不妨設(shè)),取, </p><p>  則雖然有

31、 , </p><p>  但 </p><p>  由函數(shù)一致連續(xù)的定義,函數(shù)在內(nèi)不一致連續(xù).

32、 </p><p>  那么應(yīng)具有什么樣的條件,函數(shù)在上連續(xù)才能在上一致連續(xù)呢? </p><p>  定理3 若函數(shù)在閉區(qū)間上連續(xù),則函數(shù)在上一致連續(xù).

33、 </p><p>  這就是著名的G.康托(Con tor)定理.函數(shù)在閉區(qū)間上連續(xù)的這一性質(zhì)對(duì)于研究函數(shù)一致連續(xù)性是非常重要的,由它我們可以推出許多重要結(jié)論. </p><p>  注1 對(duì)于函數(shù)的一致連續(xù)性的掌握應(yīng)該注意以下兩點(diǎn):

34、 </p><p>  (1)一致連續(xù)的函數(shù)必連續(xù),連續(xù)函數(shù)不一定一致連續(xù).</p><p>  (2)函數(shù)一致連續(xù)的否定敘述:設(shè)函數(shù)在區(qū)間上有定義,若,使,,雖然有 </p><p>  但有 ,

35、 </p><p>  稱函數(shù)在區(qū)間上非一致連續(xù). </p><p>  因此,我們可以在某一點(diǎn)討論函數(shù)的連續(xù)性,卻不能在這一點(diǎn)討論函數(shù)的一致連續(xù)性.函數(shù)的連續(xù)性反映的是函數(shù)的局部性質(zhì),而函數(shù)的一致

36、連續(xù)性則反映的是在整個(gè)區(qū)間上的整體性質(zhì),它們是兩個(gè)不同的概念,既有聯(lián)系又有區(qū)別. </p><p>  2. 一元函數(shù)一致連續(xù)的判斷和應(yīng)用 </p><p>  2.1 一元函數(shù)在

37、有限區(qū)間上的一致連續(xù)性 </p><p>  定理3 康托定理:若函數(shù)在閉區(qū)間上連續(xù),則在上一致連續(xù). </p><p>  這個(gè)定理的證明可應(yīng)用實(shí)數(shù)的連續(xù)性命題中的有限覆蓋定理或致密性定理來證明,下面用致密性定理來證明.

38、 </p><p>  證明 若不然,即對(duì),在區(qū)間 內(nèi)至少存在兩點(diǎn) 及 , 雖然 ,</p><p>  但是 .</p><p>  現(xiàn)取 ,那么在 內(nèi)存在兩點(diǎn) 及 . 雖然

39、 </p><p>  ,但是有 . </p><p>  應(yīng)用致密性定理,在有界數(shù)列中存在一個(gè)收斂的子列 ,這里 ,再由于 , 所以 </p><

40、p>  , </p><p><b>  亦即 .</b></p><p>  因?yàn)?,所以 ,

41、 </p><p>  并且 對(duì)一切 成立;另一方面,由于 在 連續(xù),亦即 </p><p>  由函數(shù)極限與數(shù)列極限的關(guān)系,有.所以 </p><p&

42、gt;  . </p><p>  這同 對(duì)一切 成立相矛盾.故假設(shè)不成立.從而原命題成立. </p><p>  注2 G.康托定理對(duì)于開區(qū)

43、間不成立,如例1中所示. </p><p>  由G.康托定理可知,函數(shù)在閉區(qū)間上一致連續(xù)在上連續(xù),所以在閉區(qū)間上連續(xù)的函數(shù)必定一致連續(xù),而對(duì)于有限開區(qū)間和無限區(qū)間,則結(jié)論不一定成立.這就需要在有限開區(qū)間的端點(diǎn)或無窮遠(yuǎn)點(diǎn)處加上一定的條件,一致連續(xù)性才能成立,這就有下面的定理.

44、 </p><p>  定理4 函數(shù)在內(nèi)一致連續(xù)在連續(xù),且與都存在. </p><p>  證明[充分性]令

45、 </p><p>  則 在上連續(xù),從而在上一致連續(xù),所以在內(nèi)一致連續(xù). </p><p> ?。郾匾裕?因?yàn)樵?內(nèi)一致連續(xù),所以在 內(nèi)連續(xù),即對(duì)于 ,當(dāng)時(shí), 有

46、 </p><p>  于是當(dāng) 時(shí),有 </p><p>  根據(jù)柯西收斂準(zhǔn)則,極限 存在.同理可證 也存在.

47、 </p><p>  根據(jù)定理4,可以得到結(jié)論:</p><p>  推論1 若在區(qū)間(或)上連續(xù),且(或)存在且有限函數(shù)在(或)上一致連續(xù). </p><p>  在有限區(qū)間上有一個(gè)重要的性質(zhì):函數(shù)在上一致連續(xù),又在上一致連續(xù), .則在上一致連續(xù).

48、 </p><p>  2.2 一元函數(shù)在無限區(qū)間上的一致連續(xù)性 </p><p>  定理5 在內(nèi)一致連續(xù)的充分條件是在內(nèi)連續(xù),且都存在.

49、 </p><p>  證明  ,當(dāng) 時(shí),有 </p><p>  從而若 時(shí), 有 </p><p><b>  所以在上一致連續(xù).</b>

50、;</p><p>  同理可證:由知,,當(dāng) 時(shí),有 </p><p>  , </p><p>  即知 在 上一致連續(xù).

51、 </p><p>  又 在上連續(xù),則在上一致連續(xù),當(dāng) 時(shí),有 </p><p>  , </p><p>  故 在 上一致連續(xù).取 ,當(dāng) 時(shí)便有

52、 </p><p>  即 在上一致連續(xù). </p><p>  根據(jù)定理5還可以得到以下結(jié)論:</p><p>  推論2 函數(shù)在上一致

53、連續(xù)的充分條件是在內(nèi)連續(xù),且存在.</p><p>  推論3 函數(shù)在上一致連續(xù)的充分條件是在內(nèi)連續(xù),且與都存在.</p><p>  推論4 函數(shù)在上一致連續(xù)的充分條件是在內(nèi)連續(xù),且存在.</p><p>  推論5 函數(shù)在上一致連續(xù)的充分條件是在內(nèi)連續(xù),且與都存在.</p><p>  對(duì)于周期函數(shù)我們有以下定理:</p>

54、<p>  定理6 設(shè)是定義在上的以為周期的周期函數(shù),則在上一致連續(xù)的充要條件是在上連續(xù).</p><p>  證明 必要性顯然.下證充分性.</p><p>  因?yàn)樵谏线B續(xù),所以在上也連續(xù),因而一致連續(xù). </p><p>  因此對(duì),使得對(duì),且,有

55、 </p><p>  . </p><p>  ,且,不妨假設(shè)且,即 </p><p>  . </p><p>  若,則

56、 </p><p>  , </p><p>  有. </p><p><b>  若,則有</b></p><p>  , </p><p>  且 ,故有

57、 . </p><p>  綜上所述,函數(shù)在上一致連續(xù).</p><p>  注3 運(yùn)用定理6,可知三角函數(shù)等周期函數(shù)在上是一致連續(xù)的.</p><p>  還可以運(yùn)用其他方法來判定.</p><p> ?、?利用漸近線)函數(shù)在連續(xù),且有斜漸近線,即有數(shù) 與 ,使 ,則在一致連續(xù).</p>

58、<p> ?、迫艉瘮?shù)在可導(dǎo),且(常數(shù)或),則在 一致連續(xù)的充要條件是為常數(shù).</p><p>  例2 證明:在上一致連續(xù).</p><p>  證明 由于,故在該區(qū)間有漸近線,所以 在上一致連續(xù).</p><p>  2.3 一元函數(shù)在任意區(qū)間上的一致連續(xù)性</p><p>  定理7 若函數(shù) 在區(qū)間上滿足Lipchitz條件,

59、即存在常數(shù) ,使對(duì)任何 ,都有 ,則函數(shù) 在區(qū)間 上一致連續(xù).</p><p><b>  依定義可立即得證.</b></p><p>  該定理常常與中值定理結(jié)合在一起運(yùn)用.</p><p>  定理7僅僅是函數(shù)在區(qū)間上一致連續(xù)的充分非必要條件,如下例:</p><p>  例3 證明在上一致連續(xù)但不滿足Lipchi

60、tz條件.</p><p>  證明 在上連續(xù),由Contort定理知在上一致連續(xù).</p><p>  取 顯然,且有 , </p><p>  , </p><p>  從而,對(duì)任意充分大的正整數(shù),總存在使得</p><p>  ,

61、</p><p>  即 . </p><p>  故在上一致連續(xù),但在上不滿足Lipchitz條件.</p><p>  由Lipchitz條件啟發(fā),還可以得到:</p><p>  推論6 設(shè)存在,使對(duì)任意,都有 <

62、/p><p>  成立,且在區(qū)間上一致連續(xù),則在區(qū)間上一致連續(xù).</p><p>  定理8 函數(shù) 在上一致連續(xù)對(duì)區(qū)間上任意兩個(gè)數(shù)列,當(dāng)時(shí),有</p><p>  證明[必要性]因?yàn)樵?上一致連續(xù),所以,</p><p><b>  當(dāng)時(shí)有 .</b></p><p>  任取上的兩數(shù)列 與 并且滿足

63、 .</p><p>  則對(duì)>0 ,當(dāng)時(shí)有 </p><p><b>  于是,即 </b></p><p>  [充分性]假設(shè)在上不一致連續(xù),則 ,但 </p><p><b>  .</b></p><p><b>  特別

64、,取 ,則,但</b></p><p><b>  ,</b></p><p>  這與已知條件矛盾.所以原命題成立.</p><p>  注4這個(gè)定理主要來判斷函數(shù)的非一致連續(xù)性.</p><p>  注5 利用定義證明函數(shù)在上的非一致連續(xù)的關(guān)鍵是確定,并且找出使得.而要做到這一點(diǎn),對(duì)于某些函數(shù)來說是比較困

65、難的,但是根據(jù)前面判定函數(shù)一致連續(xù)的充要條件容易得到函數(shù)在區(qū)間上非一致連續(xù)的兩個(gè)比較簡(jiǎn)單的充分條件:</p><p>  (1)連續(xù)函數(shù)在區(qū)間內(nèi)非一致連續(xù)的充分條件是和至少有一個(gè)不存在.</p><p> ?。?)連續(xù)函數(shù)在區(qū)間非一致連續(xù)的充分條件是在區(qū)間上存在兩個(gè)數(shù)列,,使得,但 . </p><

66、p>  利用上面兩個(gè)判定方法可以證明以下幾個(gè)題目:</p><p> ?。?) 函數(shù)在上非一致連續(xù);</p><p> ?。?) 函數(shù)在上非一致連續(xù);</p><p> ?。?) 函數(shù)在R上非一致連續(xù);</p><p> ?。?) 函數(shù)在上非一致連續(xù)(提示:可以取,).</p><p>  定理9 函數(shù)在區(qū)間上

67、一致連續(xù)時(shí)有 . </p><p>  該定理根據(jù)定義可以很容易的證明.</p><p>  例4 討論函數(shù)在上一致連續(xù)性.</p><p><b>  解 在上連續(xù).設(shè)</b></p><p><b>  當(dāng)時(shí),設(shè),則</b></p><

68、p><b>  ,</b></p><p><b>  ,</b></p><p>  且 . </p><p><b>  所以在上一致連續(xù).</b></p><p>  當(dāng)時(shí),

69、 , </p><p>  且 .

70、 </p><p><b>  所以在上一致連續(xù).</b></p><p>  由(1)(2)可得在上是一致連續(xù)的.</p><p>  例5 證明= 在 上非一致連續(xù).</p><p><b>  證明</b></p><p><b>  方法1  <

71、;/b></p><p><b>  有</b></p><p><b>  .</b></p><p>  所以=在上非一致連續(xù).</p><p>  根據(jù)一直連續(xù)性定義證得.</p><p><b>  方法2 取 , 且</b></p&

72、gt;<p><b>  .</b></p><p><b>  但 .</b></p><p>  所以= 在 上非一致連續(xù).</p><p>  綜上所述,一元函數(shù)主要是運(yùn)用函數(shù)的定義或所滿足條件的定義區(qū)間來證明或判斷的,上述給出了幾種判定方法,但并不全面,我們還可以進(jìn)行深入的討論和研究.下面再給出幾種

73、判別方法,由于篇幅有限,僅給出判定定理,自己證明.</p><p> ?、?利用導(dǎo)數(shù))若在區(qū)間上存在有界導(dǎo)函數(shù),即,有,則在上一致連續(xù).</p><p> ?、疲ɡ脭M可導(dǎo))定義3(凸函數(shù)) 設(shè)函數(shù)在區(qū)間上有定義,若,有(或).</p><p>  則稱為定義在區(qū)間上的上凸(或下凸)函數(shù),上、下凸函數(shù)統(tǒng)稱為凸函數(shù).</p><p>  定義4

74、(擬可導(dǎo)函數(shù)) 若函數(shù)在有定義,且極限</p><p><b>  存在,</b></p><p>  則稱函數(shù)在擬可導(dǎo),記為. </p><p>  引理 凸函數(shù)在任意開區(qū)間(有限或無窮)上連續(xù).</p><p>  定理10 若在開區(qū)間(有限或無窮)上單調(diào),且在內(nèi)處處存在有界,則在上一致連續(xù).</p>

75、<p>  推論7 若是開區(qū)間(有限或無窮)上的凸函數(shù),且擬導(dǎo)數(shù)存在,有界,則在上一致連續(xù).</p><p>  推論8 若在開區(qū)間(有限或無窮)上滿足條件:</p><p>  ①,有; </p><p> ?、?,和都存在;

76、 </p><p>  ③在上處處擬可導(dǎo),且擬導(dǎo)數(shù)有界, 則在上一致連續(xù).</p><p><b>  二元函數(shù)一致連續(xù)性</b></p><p>  3.1 二元函數(shù)一致連續(xù)的概念</p><p>

77、;  定義5 設(shè)為定義在區(qū)域上的二元函數(shù),(它或者是的聚點(diǎn)或者是的孤立點(diǎn))若,即對(duì),使得當(dāng) 時(shí),有 , </p><p>  則稱函數(shù) 關(guān)于區(qū)域在點(diǎn)連續(xù).</p><p>  若二元函數(shù)在區(qū)域上任意一點(diǎn)都連續(xù),則稱在區(qū)域上連續(xù).</p><p>  定義6 函數(shù)在區(qū)域上,如果對(duì),(僅與有關(guān)),當(dāng)且時(shí),有 ,

78、 </p><p>  則稱函數(shù)在上一致連續(xù).</p><p>  3.2 二元函數(shù)的一致連續(xù)性的判斷及應(yīng)用 </p><p>  下面我們將一元函數(shù)的一致連續(xù)的一些結(jié)論推廣到二元函數(shù)中去.</p><p>  定理11(柯西收斂準(zhǔn)則)平面點(diǎn)列收斂使得當(dāng)時(shí),對(duì),都有. </p><p>  定理12(歸

79、結(jié)原則) 設(shè)二元函數(shù)在有定義.存在對(duì)任何含于且以為極限的點(diǎn)列,極限都存在且相等.</p><p>  定理13 若函數(shù)在有界閉區(qū)域上連續(xù),則在上一致連續(xù).</p><p>  定理14函數(shù)在有界開區(qū)域上一致連續(xù)的充要條件是在上連續(xù),且存在.(記為的邊界)</p><p>  定理15函數(shù)在上連續(xù),且存在,其,則在上一致連續(xù).</p><p>

80、  定理16函數(shù)在區(qū)域上滿足:,都有</p><p><b>  (為正常數(shù)),</b></p><p><b>  則在上一致連續(xù).</b></p><p>  定理17函數(shù)在凸區(qū)域內(nèi)存在有界偏導(dǎo)數(shù),則在上一致連續(xù).</p><p>  定理18函數(shù)在區(qū)域上一致連續(xù)對(duì),</p>&l

81、t;p><b>  ,恒有.</b></p><p>  定理19函數(shù)在有界區(qū)域上一致連續(xù)的充要條件是函數(shù)將中的柯西列變成中的柯西列.</p><p>  總之,一元函數(shù)的一致連續(xù)性大多可以推廣到二元函數(shù)上去,但形式上要注意區(qū)別,例如定理18中的條件要求為凸區(qū)域.</p><p><b>  結(jié)束語</b></

82、p><p>  文章比較全面的總結(jié)了一元函數(shù)判斷的一致連續(xù)性的方法,并結(jié)合實(shí)例對(duì)這些方法加以應(yīng)用,同時(shí)將一元函數(shù)的一致連續(xù)性推廣到二元函數(shù)上去,這些都具有一定的意義.然而必須指出:關(guān)于函數(shù)一致連續(xù)性的判斷,是由函數(shù)所滿足的條件及所定義的范圍決定的,本文還不能解決所有的判斷函數(shù)一致連續(xù)性的問題,還可以進(jìn)行更加深入的討論和研究.</p><p><b>  參考文獻(xiàn)</b>&

83、lt;/p><p>  [1]華東師范大學(xué)數(shù)學(xué)系.數(shù)學(xué)分析上冊(cè)(第四版) [M].北京:高等教育出版社.2010.7.81-86</p><p>  [2]華東師范大學(xué)數(shù)學(xué)系.數(shù)學(xué)分析下冊(cè)(第四版) [M].北京:高等教育出版社.2010.6.111-</p><p><b>  113</b></p><p>  [3]裴

84、禮文.數(shù)學(xué)分析中的典型問題及方法[M].北京.高等教育出版社.2001.93-103,106-108</p><p>  [4]錢吉林. 數(shù)學(xué)分析題解精粹[M].武漢.崇文書局.2003.122-124.</p><p>  [5]傅沛仁.劉玉璉.數(shù)學(xué)分析講義(第二版)[M].北京:高等教育出版社,.2003:135-144.</p><p>  [6]周家云.劉一

85、鳴.解際太.數(shù)學(xué)分析的方法[M].濟(jì)南:山東教育出版社.1991:52-56.</p><p>  [7]邱德華,李水田.函數(shù)一致連續(xù)的幾個(gè)充分條件[J].大學(xué)數(shù)學(xué),2006, 22(3):136-138</p><p>  [8]林遠(yuǎn)華.對(duì)函數(shù)一致連續(xù)性的幾點(diǎn)討論[J].河池師專學(xué)報(bào),2003;12:68-70</p><p>  [9]范新華.判別函數(shù)一致連續(xù)的

86、幾種方法[J].常州工學(xué)院學(xué)報(bào),2004;8:49-50</p><p>  [10]瞿明清.淺談二元函數(shù)的一致連續(xù)性[J].滁州學(xué)院學(xué)報(bào),2004;9:98-99</p><p><b>  致謝</b></p><p>  時(shí)光匆匆如流水,轉(zhuǎn)眼便是大學(xué)畢業(yè)時(shí)節(jié),春夢(mèng)秋云,聚散真容易.離校日期已日益漸進(jìn),畢業(yè)論文的完成也隨之進(jìn)入尾聲,這也意味

87、著我在周口師范學(xué)院四年的學(xué)習(xí)生活即將結(jié)束。回首既往,自己一生的青春歲月能夠在這樣的校園之中,能夠在才華橫溢老師的熏陶下度過,實(shí)在是很榮幸!我在學(xué)習(xí)上和思想上的受益匪淺,除了自身的努力之外還與各位老師、同學(xué)、朋友的關(guān)心、支持和鼓勵(lì)是分不開的!讓我在一個(gè)充滿溫馨的環(huán)境中度過四年的大學(xué)生活,感恩之情難以用言語量度,謹(jǐn)以最樸實(shí)的話語致以最崇高的敬意!</p><p>  本論文是在鄭老師的悉心指導(dǎo)下完成的.鄭老師淵博的專

88、業(yè)知識(shí)、嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度、精益求精的工作作風(fēng)、誨人不倦的高尚師德、嚴(yán)于律己、寬以待人的崇高風(fēng)范,樸實(shí)無法、平易近人的人格魅力對(duì)我影響深遠(yuǎn).不僅使我樹立了遠(yuǎn)大的學(xué)習(xí)目標(biāo),掌握了基本的研究方法,還使我明白了許多為人處事的道理.本次論文從選題到完成,每一步都是在導(dǎo)師的悉心指導(dǎo)下完成的,傾注了鄭老師大量的心血.在此,謹(jǐn)向鄭老師表示崇高的敬意和衷心的感謝! </p><p>  最后要感謝的是我的父母,他們不僅培養(yǎng)了我對(duì)中國(guó)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論