版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1DoingMonteCarloSimulationinMinitabStatisticalSoftwareDoingMonteCarlosimulationsinMinitabStatisticalSoftwareisveryeasy.ThisarticleillustrateshowtouseMinitabfMonteCarlosimulationsusingbothaknownengineeringfmulaaDOEequatio
2、n.byPaulSheehyEstonMartzMonteCarlosimulationusesrepeatedromsamplingtosimulatedatafagivenmathematicalmodelevaluatetheoutcome.Thismethodwasinitiallyappliedbackinthe1940swhenscientistswkingontheatomicbombusedittocalculateth
3、eprobabilitiesofonefissioninguraniumatomcausingafissionreactioninanother.Withuraniuminshtsupplytherewaslittleroomfexperimentaltrialerr.Thescientistsdiscoveredthataslongastheycreatedenoughsimulateddatatheycouldcomputereli
4、ableprobabilities—reducetheamountofuraniumneededftesting.Todaysimulateddataisroutinelyusedinsituationswhereresourcesarelimitedgatheringrealdatawouldbetooexpensiveimpractical.ByusingMinitab’sabilitytoeasilycreateromdatayo
5、ucanuseMonteCarlosimulationto:?Simulatetherangeofpossibleoutcomestoaidindecisionmaking?Fecastfinancialresultsestimateprojecttimelines?Understthevariabilityinaprocesssystem?Findproblemswithinaprocesssystem?Manageriskbyund
6、erstingcostbenefitrelationshipsStepsintheMonteCarloApproachDependingonthenumberoffactsinvolvedsimulationscanbeverycomplex.ButatabasiclevelallMonteCarlosimulationshavefoursimplesteps:1.IdentifytheTransferEquationTodoaMont
7、eCarlosimulationyouneedaquantitativemodelofthebusinessactivityplanprocessyouwishtoexple.Themathematicalexpressionofyourprocessiscalledthe“transferequation.”Thismaybeaknownengineeringbusinessfmulaitmaybebasedonamodelcreat
8、edfromadesignedexperiment(DOE)regressionanalysis.2.DefinetheInputParametersFeachfactinyourtransferequationdeterminehowitsdataaredistributed.Someinputsmayfollowthenmaldistributionwhileothersfollowatriangularunifmdistribut
9、ion.Youthenneedtodeterminedistributionparametersfeachinput.Finstanceyouwouldneedtospecifythemeanstarddeviationfinputsthatfollowanmaldistribution.3.CreateRomDataTodovalidsimulationyoumustcreateaverylargeromdatasetfeachinp
10、ut—somethingontheder100000instances.Theseromdatapointssimulatethevaluesthatwouldbeseenoveralongperiodfeachinput.Minitabcaneasilycreateromdatathatfollowalmostanydistributionyouarelikelytoencounter.4.SimulateAnalyzeProcess
11、OutputWiththesimulateddatainplaceyoucanuseyourtransferequationtocalculatesimulatedoutcomes.Runningalargeenoughquantityofsimulatedinputdatathroughyourmodelwillgiveyouareliableindicationofwhattheprocesswilloutputovertimegi
12、ventheanticipatedvariationintheinputs.ThosearethestepsanyMonteCarlosimulationneedstofollow.Here’showtoapplytheminMinitab.MonteCarloUsingaKnownEngineeringFmulaAmanufacturingcompanyneedstoevaluatethedesignofaproposedproduc
13、t:asmallpistonpumpthatmustpump12mloffluidperminute.Youwanttoestimatetheprobableperfmanceoverthoussofpumpsgivennaturalvariationinpistondiameter(D)strokelength(L)strokesperminute(RPM).Ideallythepumpflowacrossthoussofpumpsw
14、illhaveastarddeviationnogreaterthan0.2ml.3Minitabwillquicklycalculatetheoutputfeachrowofsimulateddata.Nowyou’rereadytolookattheresults.StatBasicStatisticsGraphicalSummarytheFlowcolumn.Minitabwillgenerateagraphicalsummary
15、thatincludesfourgraphs:ahistogramofdatawithanoverlaidnmalcurveboxplotconfidenceintervalsfthemeanthemedian.ThegraphicalsummaryalsodisplaysersonDarlingNmalityTestresultsdeivestatisticsconfidenceintervalsfthemeanmedianstard
16、deviation.ThegraphicalsummaryofyourMonteCarlosimulationoutputwilllooklikethis:Ftheromdatageneratedtowritethisarticlethemeanflowrateis12.004basedon100000samples.Onaverageweareontargetbutthesmallestvaluewas8.882thelargestw
17、as15.594.That’squitearange.Thetransmittedvariation(ofallcomponents)resultsinastarddeviationof0.757mlfarexceedingthe0.2mltarget.Alsoweseethatthe0.2mltargetfallsoutsideoftheconfidenceintervalfthestarddeviation.Itlooksliket
18、hispumpdesignexhibitstoomuchvariationneedstobefurtherrefinedbefeitgoesintoproductionMonteCarlosimulationwithMinitabletusfindthatoutwithoutincurringtheexpenseofmanufacturingtestingthoussofprototypes.Lestyouwonderwhetherth
19、esesimulatedresultsholduptryityourself!Creatingdifferentsetsofsimulatedromdatawillresultinminvariationsbuttheendresult—anunacceptableamountofvariationintheflowrate—willbeconsistenteverytime.That’sthepoweroftheMonteCarlom
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基金選擇決策的蒙特卡洛模擬.pdf
- 期權(quán)定價(jià)中的蒙特卡洛模擬方法
- 基于蒙特卡洛方法模擬中子照相.pdf
- 蒙特卡洛方法模擬材料的織構(gòu)演化.pdf
- 蒙特卡洛方法基本思想
- 期權(quán)定價(jià)中的重點(diǎn)抽樣蒙特卡洛模擬.pdf
- 無序系統(tǒng)Anderson模型的蒙特卡洛模擬研究.pdf
- CJPL宇宙線本底的蒙特卡洛模擬研究.pdf
- 蛋白質(zhì)折疊高效蒙特卡洛模擬方法研究.pdf
- 直接模擬蒙特卡洛計(jì)算的并行算法研究.pdf
- 蒙特卡洛方法的基本思路
- 暗物質(zhì)實(shí)驗(yàn)中子本底的蒙特卡洛模擬研究.pdf
- 蒙特卡洛模擬在財(cái)務(wù)投資分析中的應(yīng)用淺析
- 氣動(dòng)熱輻射的直接蒙特卡洛法模擬.pdf
- 基于蒙特卡洛模擬的建設(shè)項(xiàng)目投資風(fēng)險(xiǎn)分析.pdf
- 基于贏得值和蒙特卡洛模擬理論的工程風(fēng)險(xiǎn)管理
- 基于蒙特卡洛算法的錨泊容量研究.pdf
- 蒙特卡洛畢業(yè)設(shè)計(jì)論文(含外文翻譯)
- 區(qū)間結(jié)構(gòu)突變的單位根檢驗(yàn)和蒙特卡洛模擬.pdf
- 基于蒙特卡洛模擬的工業(yè)管道項(xiàng)目施工風(fēng)險(xiǎn)管理研究.pdf
評(píng)論
0/150
提交評(píng)論