一種基于HYPRE的高次Lagrange有限元方程的并行代數多層網格法.pdf_第1頁
已閱讀1頁,還剩56頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、湘潭大學碩士學位論文一種基于HYPRE的高次Lagrange有限元方程的并行代數多層網格法姓名:曹放申請學位級別:碩士專業(yè):計算數學指導教師:舒適20080415AbstractMultigrid can be divided into geometrical multigrid (GMG) and algebraic multigrid(AMG). Comparing with GMG, AMG can be applied to m

2、ore general cases and possessesstronger robustness, which is one of the most efficient methods to solve large scale scientificcomputation in engineering, in particular, for discretizations of partial differential equatio

3、ns.HYPRE is a popular software library for solving large sparse linear systems on massivelyparallel computers. The library is created with the primary goal of providing users withadvanced parallel solvers or precondition

4、ers, c.f. BoomerAMG. In this paper, we discuss theparallel AMG solver for high-order Lagrange finite element equations of 3D elliptic boundaryproblem by using HYPRE. The primary pursuits are as follows:Firstly, we introd

5、uce the HYPRE library, then describe some classic grid coarseningalgorithms (e.g. RS and CLJP coarsening) and a classic parallel grid coarsening algorithm:Falgout coarsening. We also introduce the convergence theory of t

6、he MSSC which is devel-oping in recent years.Secondly, based on subdomain partitions for high-order hierarchic finite element dis-cretizations and by introducing a group of sub-matrixes and sub-loading vectors relativeto

7、 faces, edges and corner points on each processor, we design a parallel algorithm of gen-erating stiffness matrix and loading vector. Additionally, we adopt a reasonable order forthe hierarchic bases, which not only brin

8、gs convenience for programming but also improvesthe relaxation efficiency of parallel AMG. Numerical experiments confirm that the parallelalgorithm enlarges the scale of generating stiffness matrix and has better scalabi

9、lity.Thirdly, based on auxiliary variational problems for higher-order finite element dis-cretizations, we design a new AMG (so-called X-AMG) and prove that the convergencerate of X-AMG is independent of the mesh size by

10、 using the theory concerning method ofsuccessive subspace corrections, which can also be confirmed by the resulting of numericalexperiments. Then we design two parallel algorithms for X-AMG. The first one, called X-AMG-I

11、, is designed for a serial structure of stiffness matrix. Although X-AMG-I is stableon the number of iteration, there exists the following faults: it is too frequent for the trans-formation between parallel vector and se

12、rial vector, and the efficiency of the algorithm isdependent on the smoother closely. Thus we design the second parallel algorithm for X-AMG, called X-AMG-II, which improves the X-AMG-I. The resulting new parallel AMGis

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論