2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、設(shè)G為群,H≤G,稱H為G的一個CC-子群,如果對任意的1≠x∈H,都有CG(x)≤H成立.顯然群G本身為CC-子群,我們稱之為平凡的CC-子群.
   本文利用CC-子群的基本性質(zhì),對一些含有特殊非平凡CC-子群的群作了一些研究,主要證明了:
   定理3.4若G的非平凡CC-子群是極大子群,則|G|=pqn,且n≤p-1.特別地,當(dāng)n=p-1時,G=()N.其中,為p階子群,N=×

2、bp-1>,bai=bi+1,i=1,2,…,p-2,bap-1=b-11b-12…b-1p-1.
   在第四節(jié),我們還探討了CC-子群對局部有限群的的結(jié)構(gòu)的影響,得到了,
   定理4.1設(shè)G是局部有限群,若G存在CC-子群,但是其每一個真子群都不含有CC-子群,則G是階小于或者等于pq-1的初等阿貝爾p-群被q階循環(huán)群的擴張.其中,p,q是互不相同的素數(shù).
   定理4.2設(shè)G是局部有限群,若G存在CC-子

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論