版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、在這篇碩士學(xué)位論文中,我們主要在局部一致空間中考慮無(wú)界區(qū)域上一個(gè)非自治不可壓縮非牛頓流體方程解的存在唯一性以及系統(tǒng)的吸引子的存在性。 我們知道不同于有界區(qū)域的情況,在無(wú)界區(qū)域上,各Lebesgue可積函數(shù)空間Lp之間沒有嵌套包含關(guān)系,經(jīng)典的Sobolev嵌入缺乏緊性,而且常值函數(shù)不再可積,這些不足導(dǎo)致了無(wú)界區(qū)域上問(wèn)題的研究非常復(fù)雜。所以,在某種意義上,局部一致空間的引進(jìn)對(duì)于無(wú)界區(qū)域上問(wèn)題的研究顯得非常自然和重要,因?yàn)榫拖裼薪鐓^(qū)域
2、的情況,局部一致空間LPU之間滿足包含關(guān)系,常值函數(shù)被包含了進(jìn)來(lái),而且局部一致空間還具有局部緊嵌入性質(zhì),一般的Lebesgue可積函數(shù)空間和Sobolev空間都是相應(yīng)局部一致空間的子空間。這樣,在局部一致空間中考慮問(wèn)題時(shí),不僅可以使我們的分析變得簡(jiǎn)單,而且可以允許更一般的初始值條件,最終得到更大范圍內(nèi)的一類解。為方便起見,我們首先介紹了局部一致空間的定義及其性質(zhì),其次我們給出了無(wú)界區(qū)域上一個(gè)非自治不可壓縮非牛頓流體方程在局部一致空間中解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單螺桿擠出機(jī)中不可壓縮粘性非牛頓流體的流動(dòng)分析.pdf
- 不可壓縮非牛頓流體動(dòng)力學(xué)方程組弱解的漸近性.pdf
- 紐結(jié)、空間圖補(bǔ)空間中的不可壓縮兩兩不可壓縮曲面.pdf
- 可壓縮-不可壓縮流體交界面高精度數(shù)值方法的研究.pdf
- 3維流形的融合積中不可壓縮曲面的一個(gè)研究.pdf
- 紐結(jié)補(bǔ)中的不可壓縮分段不可壓縮曲面.pdf
- 不可壓縮流體中的一些數(shù)學(xué)問(wèn)題的研究.pdf
- 包含一個(gè)非分離不可壓縮環(huán)面的3-流形的虧格.pdf
- 一維可壓縮流體的相變問(wèn)題.pdf
- 不可壓縮流體恒定流動(dòng)量定律實(shí)驗(yàn)
- 不可壓縮流體的邊界層問(wèn)題.pdf
- 紐結(jié)補(bǔ)中的不可壓縮邊界不可壓縮曲面的性質(zhì).pdf
- 非牛頓流體中氣泡生成的研究.pdf
- 粘性不可壓縮流體的管道流動(dòng)問(wèn)題.pdf
- 非牛頓流體中的氣泡行為.pdf
- 不可壓縮流體恒定流能量方程實(shí)驗(yàn)分析
- 不可壓縮滲流方程的研究.pdf
- 攪拌槽內(nèi)非牛頓流體的微觀混合特性.pdf
- 二階不可壓縮流體的Slip型邊值問(wèn)題.pdf
- 正交網(wǎng)格下不可壓縮流體的圖形學(xué)模擬.pdf
評(píng)論
0/150
提交評(píng)論