版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 附 錄 一</b></p><p><b> 調(diào)研報(bào)告</b></p><p> 數(shù)據(jù)挖掘在CRM中運(yùn)用</p><p> (1)通過(guò)數(shù)據(jù)挖掘獲得新的客戶。</p><p> 在CRM中首先應(yīng)識(shí)別潛在客戶,然后將他們轉(zhuǎn)化為客戶。Big Bank and Cred
2、it Card(BB&CC)公司每年通過(guò)郵遞的方式開(kāi)展25 次促銷活動(dòng),每次給一百萬(wàn)人提供申請(qǐng)信用卡的機(jī)會(huì),BB&CC 公司會(huì)將信用高的申請(qǐng)者接受為服務(wù)對(duì)象,最終只有1%的申請(qǐng)者成為用戶。</p><p> BB&CC公司所面臨的挑戰(zhàn)是如何讓郵遞促銷活動(dòng)更加有效。首先,BB&CC公司抽取了一個(gè)50,000人的樣本,做了一個(gè)測(cè)試。在樣本測(cè)試結(jié)果分析的基礎(chǔ)上建立了兩個(gè)模型,一個(gè)用來(lái)預(yù)
3、測(cè)誰(shuí)將填寫(xiě)申請(qǐng)表(使用決策樹(shù)方法),另一個(gè)是信用評(píng)估模型(使用神經(jīng)網(wǎng)絡(luò)方法)。從剩下的950,000 個(gè)人中再次抽取700,000個(gè)樣本,使用模型找出哪些人會(huì)對(duì)促銷活動(dòng)做出反應(yīng),并且具有良好的信用。結(jié)果如下:包括建模型時(shí)用的50,000 共抽取了750,000個(gè)樣本,其中9,000 個(gè)申請(qǐng)者被接受,接受率從1%上升到了1.2%。</p><p> 數(shù)據(jù)挖掘雖然不能準(zhǔn)確的識(shí)別哪10,000個(gè)申請(qǐng)者最終會(huì)成為用戶,
4、但是可以促使?fàn)I銷活動(dòng)更加有效。</p><p> (2)通過(guò)數(shù)據(jù)挖掘使用交叉銷售提高現(xiàn)有客戶的價(jià)值。</p><p> Guns and Rouses(G&R)公司銷售的產(chǎn)品是:仿迫擊炮與大炮的室外花盆和仿大口徑手槍與長(zhǎng)槍的室內(nèi)花盆。產(chǎn)品表被發(fā)往12,000,000個(gè)家庭。當(dāng)客戶電話定購(gòu)某個(gè)產(chǎn)品時(shí),(G&R)公司會(huì)積極的推銷其它的產(chǎn)品——交叉銷售。但是,(G&R
5、)公司發(fā)現(xiàn)只有1/3的客戶允許他們提出建議,最終的交叉銷售率不足1%,并招致了一片抱怨聲。為此B&R公司想確定到底是哪些人在定購(gòu)某個(gè)產(chǎn)品的同時(shí)需要其他的產(chǎn)品。</p><p> G&R公司建立了兩個(gè)數(shù)據(jù)挖掘模型,一個(gè)是用來(lái)預(yù)測(cè)某個(gè)客戶是否會(huì)被建議觸怒,另一個(gè)用來(lái)預(yù)測(cè)什么樣的建議會(huì)被很好的接受。數(shù)據(jù)挖掘模型使用客戶信息數(shù)據(jù)庫(kù)中客戶的信息和新的客戶信息,告訴銷售代表哪種人可以采用交叉銷售的方式以及建
6、議什么產(chǎn)品。交叉銷售的成功率上升到了2%,而且很少有抱怨。</p><p> 數(shù)據(jù)挖掘幫助B&R公司更好的了解了客戶的需求。當(dāng)把數(shù)據(jù)挖掘模型與典型的CRM交叉銷售活動(dòng)結(jié)合起來(lái)時(shí),B&R 公司的景況完全改變了。</p><p> (3)通過(guò)數(shù)據(jù)挖掘提高現(xiàn)有客戶的價(jià)值</p><p> Big Sam’s Clothing 是一家制衣公司,它建立了
7、一個(gè)網(wǎng)站,提供了友好的用戶登陸界面;進(jìn)行在線銷售。一旦你定購(gòu)了某件商品或注冊(cè)為成員后,公司將會(huì)通過(guò)電子郵件的方式向你推薦一些你可能感興趣的新產(chǎn)品F當(dāng)你在網(wǎng)站上查閱一件產(chǎn)品時(shí),網(wǎng)站會(huì)向你推薦一些與該產(chǎn)品有關(guān)的你可能感興趣的產(chǎn)品。</p><p> 當(dāng)公司最初建立這個(gè)網(wǎng)站時(shí),根本沒(méi)有考慮個(gè)性化,僅僅將它作為一個(gè)產(chǎn)品目錄的在線版。借助數(shù)據(jù)挖掘工具公司改善了網(wǎng)站的結(jié)構(gòu),使用聚類方法將以往按產(chǎn)品類型分類替換成按互補(bǔ)原則分
8、類。當(dāng)客戶尋找某個(gè)商品時(shí)便可以使用這些分組提供建議,然后建立客戶數(shù)據(jù),識(shí)別哪些客戶可能對(duì)產(chǎn)品目錄中添加的新產(chǎn)品感興趣。同時(shí),Big Sam’s 公司用數(shù)據(jù)挖掘預(yù)測(cè)那些會(huì)引起客戶興趣的新產(chǎn)品,并通過(guò)電子郵件傳遞給客戶,客戶可以選擇是否接收。</p><p> Big Sam’s 公司確定了個(gè)性化戰(zhàn)略,通過(guò)提供主動(dòng)性客戶服務(wù)指導(dǎo)客戶挑選商品,不僅增加了銷售額而且加強(qiáng)了與客戶之間的聯(lián)系??蛻粢呀?jīng)將它看作購(gòu)物時(shí)忠實(shí)的顧
9、問(wèn)。</p><p> (4)通過(guò)數(shù)據(jù)挖掘保留忠實(shí)客戶。</p><p> Know Service公司是一家網(wǎng)絡(luò)服務(wù)公司,像其它的公司一樣也在不停地流失客戶。流失率每月8%,這意味著現(xiàn)有的一百萬(wàn)個(gè)客戶中每個(gè)月會(huì)有80,000個(gè)客戶流失。Know Service公司重新尋找一個(gè)客戶的成本是$200,每個(gè)月公司要在尋找新客戶上投資$16,000,000,因此Know Service公司需
10、要數(shù)據(jù)挖掘的幫助。</p><p> Know Service公司掌握了客戶的大量上網(wǎng)信息和客戶的個(gè)人信息,構(gòu)建了客戶信息數(shù)據(jù)庫(kù)。Know Service公司做的第一件事就是從客戶數(shù)據(jù)庫(kù)中選擇、轉(zhuǎn)變數(shù)據(jù)。接下來(lái)所作的就是根據(jù)客戶支出、生命周期對(duì)客戶進(jìn)行劃分,并判定客戶的持久性,識(shí)別哪些客戶在將來(lái)會(huì)成為忠實(shí)的客戶然后在忠實(shí)的客戶中識(shí)別哪些有可能流失。第三步,確定最優(yōu)服務(wù)、保持客戶忠實(shí)。例如對(duì)上網(wǎng)支出大的客戶可以提
11、供包月的服務(wù)而不是提供更加大的主頁(yè)空間。</p><p> 結(jié)果客戶流失率從原來(lái)的8%下降到7.5%,每個(gè)月節(jié)省了$1,000,000。</p><p> Research Report</p><p> The data mining is using in the CRM</p><p> (1)Acquire the new c
12、ustomers through data mining.</p><p> Should identify the latent customer first in the CRM, and then convert them as the customer. Annually the Big Bank and Credit Card (BB& CC) company opens the exhibi
13、tion in the way of postal delivery to promote sales the activity 25 times, the every time gives 1,000,000 people the opportunity that provides to apply for the credit card, the BB& CC company meeting accept high appl
14、icant of reputation for the service object, end only have 1% applicant to become the customer.</p><p> How the challenge that the BB& CC company face is let the postal delivery promotes sales the activi
15、ty more valid. First, the BB& CC Company sampled the sample of a 50,000 people, doing a test. Test the analytical foundation of result in the sample up built up two models, a uses to predict who will fill in the app
16、lication form (usage the decision tree method), the is the reputation valuation model. (Usage the nerve network method)From leave of 950,000 personal medium samples 700,000 samples agai</p><p> The data min
17、ing although can't identify accurately which 10,000 applicants end will become the customer, can urge the marketing activity more valid.</p><p> (2) Cross the value that the sale raises the existing cus
18、tomer through data mining.</p><p> The product of the Guns and Rouses (G& R) Company sale is: Imitate the outdoors flower pot of the trench mortar and big gun and imitate the big caliber revolver with i
19、ndoor flower pot of the long gun. The product watch is disheveled hair to go toward 12,000,000 families. When customer's telephone orders a certain product, (G& R) the company will promote other products actively
20、- cross the sale. But,( G& R) the company detection only have 1/3 of customer allow they put forward the suggestion, at l</p><p> The G& R Company built up two types model of data mining, the one is
21、 used to predict whether a certain customer will is suggest to infuriate or not, the another is used to predict what kind of suggestion would accept well. The data mining model uses the customer the information database
22、in the customer's information and new customer's information, tell the sales representative which grow the person to can adopt way and suggestions of cross the sale what product. The success rate that crosses the
23、</p><p> Data mining is to help the B& R Company better understood the customer's need. When cross the sales activity knot to the CRM that data mining model and typical model to put together, comple
24、tely change of the general condition of the B& R Company.</p><p> (3) Improve the value of customer through data mining.</p><p> The Big Sam's Clothing is a dress company, which built
25、up a website, providing the customer debarkation interface of the amity; carry on the on-line sale. Once you ordered a certain merchandise or register for the member, the company will recommend some your possible interes
26、ted in new product Fs to be you toward you in the way of E-mail to check a product on the website, the website will recommend some your possible interested in product for having something to do with that products toward
27、you.</p><p> When the company builds up this website at the beginning, it did not consider all characteristics, and to be an on-line version of catalogue only. Ask the data mining tool for help the company
28、improved the structure of the website, use gather a method and will press the product type classification to substitute before press to repair the principle classification with each other. When the customer looks for cer
29、tain merchandise can use the set of these cents to provide the suggestion then, then bu</p><p> The Big Sam's company made sure the characteristic strategy, passing to provide active sex customer the se
30、rvice guides the customer to choose the merchandise, not only increasing to sell the sum but also strengthening with the contact between customer. The customer has already seen it to adviser of make the allegiance of sho
31、pping.</p><p> (4) Reserve the faithful customer through data mining.</p><p> The company of Know Service is a network service company, which being like other companies also is at run off the
32、customer without intermission. The rate of running off is monthly 8%, this means that 1,000,000 existing customers win to there will be monthly 80,000 customers run off. The cost that the company of Know Service re- look
33、s for a customer is$200, the company want to invest in looking for the new customer monthly$16,000,000, therefore the company of Know Service demand the data mining f</p><p> The company of Know Service con
34、trolled the customer in great quantities get to the Internet personal information of information and customer, set up customer's information database. The first matter that the Know Service Company does is from custo
35、mer's database to win election to choose, change data. Connect down make according to the customer to expend, the life cycle carries on the demarcation to the customer, and judge the customer's last long, identif
36、y which customers will become the faithfu</p><p> At result, the rate of running off of the customer is descending to 7.5% from original 8%, saving monthly$1,000,000.</p><p><b> 附 錄 二<
37、;/b></p><p><b> 操作手冊(cè)</b></p><p> ?。?)首先,進(jìn)入登入界面,根據(jù)不同的部門,輸入相應(yīng)的用戶名與密碼,進(jìn)入相應(yīng)的權(quán)限限制。</p><p> 進(jìn)入用戶信息管理模塊,可以對(duì)用戶信息進(jìn)行瀏覽,可以增加或刪除用戶,修改密碼。</p><p> 進(jìn)入客戶資料模塊,可以選擇查看客戶
38、基本信息、判斷客戶屬性資料(粗糙集數(shù)據(jù))、發(fā)掘潛在客戶資料(關(guān)聯(lián)規(guī)則數(shù)據(jù))和分析客戶流失資料(決策樹(shù)數(shù)據(jù))。</p><p> 若選擇查看“客戶基本信息”</p><p> 可以對(duì)客戶信息進(jìn)行瀏覽,可以增加、修改、刪除,還可以按不同的方式進(jìn)行查詢。</p><p> 若選擇查看判斷客戶屬性資料、發(fā)掘潛在客戶資料和分析客戶流失資料,可以查看各個(gè)對(duì)應(yīng)的數(shù)據(jù)表,進(jìn)行
39、增加或刪除。</p><p> ?。?)進(jìn)入客戶分析模塊,可以選擇判斷客戶價(jià)值(粗糙集)、發(fā)掘潛在客戶(關(guān)聯(lián)規(guī)則)、分析客戶流失(決策樹(shù))和客戶價(jià)值優(yōu)化(遺傳算法)。</p><p> 若選擇“判斷客戶價(jià)值”</p><p> 在彈出的對(duì)話框中單擊“屬性約簡(jiǎn)”,在下面的列表框中會(huì)輸出約簡(jiǎn)后的核屬性和相對(duì)約簡(jiǎn)簇</p><p> 然后單擊
40、“值約簡(jiǎn)”,在下面的列表框中也會(huì)輸出經(jīng)過(guò)值約簡(jiǎn)后的信息表。</p><p> 選擇一組屬性,就能判斷這個(gè)客戶是高價(jià)值的還是低價(jià)值的。</p><p> “顯示信息”可以將信息顯示到列表框中,同時(shí)我們還可以對(duì)列表框中的信息進(jìn)行“刪除信息”和“刪除所有信息”等操作。</p><p> 若選擇“發(fā)掘潛在客戶”</p><p> 首先,選擇單
41、擊“參數(shù)設(shè)置”,彈出參數(shù)設(shè)置對(duì)話框,其中“產(chǎn)品總數(shù)”表示公司的產(chǎn)品個(gè)數(shù),是一個(gè)大于0的數(shù),“支持度”</p><p> 是一個(gè)大于等于0小于等于1的數(shù),表示產(chǎn)品被購(gòu)買的頻率,“置信度”也是一個(gè)從0到1的數(shù)。設(shè)置好后點(diǎn)擊OK。</p><p> 單擊“頻繁項(xiàng)目集”,輸出頻繁項(xiàng)目</p><p> 單擊“輸出強(qiáng)關(guān)聯(lián)規(guī)則”,輸出強(qiáng)關(guān)聯(lián)規(guī)則到下面的列表框</p&
42、gt;<p> 點(diǎn)擊“輸出潛在客戶”得到我們所需要的客戶</p><p> 如果想進(jìn)一步了解潛在客戶信息,可以按客戶ID查詢客戶信息。</p><p><b> 若選擇客戶流失分析</b></p><p> 在彈出的對(duì)話框中選擇單擊“決策樹(shù)導(dǎo)出”在下面的列表框中會(huì)輸出決策樹(shù)流失模型,單擊屬性前面的“+”可以打開(kāi)樹(shù)的分支&l
43、t;/p><p> 這樣我們選擇下面下拉框中的一組屬性,單擊“判斷是否流失”就能判斷這個(gè)客戶是否存在流失的可能或是無(wú)法根據(jù)屬性判斷。</p><p> “添加用戶信息”可以將選擇屬性信息顯示到列表框中,同時(shí)我們還可以對(duì)列表框中的信息進(jìn)行“刪除用戶信息”和“清空用戶信息”的操作。</p><p><b> 若選擇客戶價(jià)值優(yōu)化</b></p
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)據(jù)挖掘在CRM中的應(yīng)用.pdf
- 數(shù)據(jù)挖掘在CRM系統(tǒng)中的應(yīng)用.pdf
- 數(shù)據(jù)挖掘技術(shù)在CRM中的應(yīng)用.pdf
- 數(shù)據(jù)挖掘技術(shù)在電信crm中的應(yīng)用
- 數(shù)據(jù)挖掘在電信行業(yè)CRM中的應(yīng)用.pdf
- 數(shù)據(jù)挖掘分類算法在CRM中的研究.pdf
- 關(guān)聯(lián)規(guī)則數(shù)據(jù)挖掘在CRM中的應(yīng)用.pdf
- 數(shù)據(jù)挖掘在分析層次CRM中的應(yīng)用.pdf
- Web數(shù)據(jù)挖掘在CRM中的應(yīng)用研究.pdf
- 數(shù)據(jù)挖掘在CRM系統(tǒng)中的應(yīng)用研究.pdf
- 數(shù)據(jù)挖掘在分析型CRM中應(yīng)用的研究.pdf
- 數(shù)據(jù)挖掘技術(shù)及其在超市CRM中的應(yīng)用.pdf
- 數(shù)據(jù)挖掘在CRM系統(tǒng)中的應(yīng)用和實(shí)施.pdf
- 淺析數(shù)據(jù)挖掘技術(shù)在煙草企業(yè)crm中的應(yīng)用
- 數(shù)據(jù)挖掘在證券CRM中的應(yīng)用研究.pdf
- 數(shù)據(jù)挖掘在電子商務(wù)[外文翻譯]
- 外文翻譯-----數(shù)據(jù)挖掘什么是數(shù)據(jù)挖掘?
- 數(shù)據(jù)挖掘在汽車制造企業(yè)的CRM中應(yīng)用.pdf
- 數(shù)據(jù)挖掘在電信CRM中的應(yīng)用研究.pdf
- 淺談數(shù)據(jù)挖掘在erp系統(tǒng)中的運(yùn)用
評(píng)論
0/150
提交評(píng)論