版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 1 第 4 講 直線、圓的位置關(guān)系 直線、圓的位置關(guān)系 【2013 年高考會(huì)這樣考】 1.考查直線與圓相交、相切的問(wèn)題.能根據(jù)給定直線、圓的方程判斷直線與圓的位置關(guān)系,能根據(jù)給定兩個(gè)圓的方程判斷兩圓的位置關(guān)系. 2.考查與圓有關(guān)的量的計(jì)算,如半徑、面積、弦長(zhǎng)的計(jì)算. 【復(fù)習(xí)指導(dǎo)】 1.會(huì)用代數(shù)法或幾何法判定點(diǎn)、直線與圓的位置關(guān)系. 2.掌握?qǐng)A的幾何性質(zhì),通過(guò)數(shù)形結(jié)合法解決圓的切線、直線被圓截得的弦長(zhǎng)等直線與圓的綜合問(wèn)題,體會(huì)用代數(shù)法
2、處理幾何問(wèn)題的思想. 基礎(chǔ)梳理 1.直線與圓的位置關(guān)系 位置關(guān)系有三種:相離、相切、相交. 判斷直線與圓的位置關(guān)系常見的有兩種方法: (1)代數(shù)法: ― ― → 判別式Δ=b2-4ac? ? ? ? ?Δ>0?相交;Δ=0?相切;Δ<0?相離.(2)幾何法:利用圓心到直線的距離 d 和圓半徑 r 的大小關(guān)系:d<r?相交,d=r?相切,d>r?相離. 2.圓與圓的位置關(guān)系的判定 設(shè)⊙C1:(x-a1)2+(y-b1)2=r2 1(r1>
3、0), ⊙C2:(x-a2)2+(y-b2)2=r2 2(r2>0),則有: |C1C2|>r1+r2?⊙C1與⊙C2相離; |C1C2|=r1+r2?⊙C1與⊙C2外切; |r1-r2|<|C1C2|<r1+r2?⊙C1與⊙C2相交; |C1C2|=|r1-r2|(r1≠r2)?⊙C1與⊙C2內(nèi)切; |C1C2|<|r1-r2|?⊙C1與⊙C2內(nèi)含. 一條規(guī)律 過(guò)圓外一點(diǎn) M 可以作兩條直線與圓相切, 其直線方程可用待定系數(shù)法, 再利
4、用圓心到切線的距離等于半徑列出關(guān)系式求出切線的斜率即可. 一個(gè)指導(dǎo) 3 解析 由已知得圓的圓心為(-1,2),則 3×(-1)+2+a=0,∴a=1. 答案 B 4. (2012·東北三校聯(lián)考)圓 O1: x2+y2-2x=0 和圓 O2: x2+y2-4y=0 的位置關(guān)系是( ).A.相離 B.相交 C.外切 D.內(nèi)切 解析 圓 O1的圓心為(1,0),半徑 r1=1,圓 O2的圓心為(0,2),半徑 r2
5、=2,故兩圓的圓心距|O1O2|= 5,而 r2-r1=1,r1+r2=3,則有 r2-r1<|O1O2|<r1+r2,故兩圓相交. 答案 B 5. (2012·沈陽(yáng)月考)直線 x-2y+5=0 與圓 x2+y2=8 相交于 A、 B 兩點(diǎn), 則|AB|=________. 解析 如圖,取 AB 中點(diǎn) C, 連接 OC、OA. 則 OC⊥AB,|OA|=2 2, |OC|=|0-2×0+5|12+ -2= 5, ∴
6、|AC|= 8-5= 3, ∴|AB|=2|AC|=2 3. 答案 2 3 考向一 直線與圓的位置關(guān)系的判定及應(yīng)用 【例 1】?(2011·東莞模擬)若過(guò)點(diǎn) A(4,0)的直線 l 與曲線(x-2)2+y2=1 有公共點(diǎn),則直線 l 斜率的取值范圍為( ). A.[- 3, 3] B.(- 3, 3) C.? ? ?? ? ? - 33 , 33D.? ? ?? ? ? - 33 , 33[審題視點(diǎn)] 設(shè)出直線 l 的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第九篇 解析幾何 第5講 橢 圓教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第九篇 解析幾何 第1講 直線的方程教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第九篇 解析幾何 第3講 圓的方程教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第九篇 解析幾何 第2講 兩條直線的位置關(guān)系教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第九篇 解析幾何 第6講 雙曲線教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第4講 直線平面平行的判定及其性質(zhì)教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第5講 直線平面垂直的判定及其性質(zhì) 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第6講 空間向量及其運(yùn)算教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第7講 立體幾何中的向量方法(一)教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第8講 立體幾何中的向量方法(二)教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第十三篇 推理證明、算法、復(fù)數(shù) 第4講 數(shù)學(xué)歸納法教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 專題四 高考立體幾何命題動(dòng)向教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第十一篇 計(jì)數(shù)原理 第2講 排列與組合教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第2講 空間幾何體的表面積與體積教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第十篇 統(tǒng)計(jì)、統(tǒng)計(jì)案例 第2講 用樣本估計(jì)總體教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第二篇 函數(shù)與基本初等函數(shù)ⅰ第1講 函數(shù)及其表示教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第十一篇 計(jì)數(shù)原理 第3講 二項(xiàng)式定理教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第二篇 函數(shù)與基本初等函數(shù)ⅰ第4講 指數(shù)與指數(shù)函數(shù)教案 理 新人教版
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 幾何證明選講 第3講 圓中的比例線段與圓內(nèi)接四邊形 新人教版選修4-1
- 【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第1講 空間幾何體的結(jié)構(gòu)三視圖和直觀圖 理 新人教版
評(píng)論
0/150
提交評(píng)論