版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 IIAbstract AbstractMatrix inverse generalized eigenvalue problem (also called inverse generalized eigenvalueproblem) concerns the reconstruction of matrices under certain constraint conditions which arefrom prescribed
2、complete/partial information of generalized eigenvalues or eigenvectors and frompartial submatrices or elements. The generalized inverse eigenvalue problem is widely involved inrelated fields such as mathematical physics
3、, structural dynamics, molecular optics, etc. With thedevelopment of these fields, many different types of questions have been proposed to promotethe rapid development of the theory of generalized inverse eigenvalue prob
4、lems. However,as the inverse problem cherishes its own complexity, and the theory and the actualdifference, it makes the study of matrix generalized inverse eigenvalue problem process isrelatively slow, except for specia
5、l cases such as symmetric tridiagonal matrix and periodictridiagonal matrix inverse problem research, which mainly use multiple eigenvalues, or the cha-racteristics of the matrix or defect data, or principal submatrices,
6、 to construct the correspondinngmatrix, but the corresponding theoretical results for inverse generalized symmetric tridiagonaleigenvalue problem by the non-principal submatrices and the defected generalizedeigenpairs ar
7、e not common. In this dissertation, two kinds of symmetric tridiagonal matrixinverse generalized eigenvalue problem such as ? ? ? n n C A ? have been considered,Bysplitting the matrix n A into 3 3? block form, when n nn
8、R C ? ? is the diagonal matrix or symm-etric tridiagonal matrices, respectively, the corresponding inverse generalized problem hasbeen studied. This dissertation includes four chapters, which is organized as follows:In C
9、hapter 1, the corresponding background of research and the preliminaryknowledge and the main work of this paper have been illustrated.In Chapter 2, the corresponding basic theory have been introduced.In Chapter 3, We fir
10、st give the definition of the first kind of inverse generalizedeigenvalue problem for symmetric tridiagonal matrix and then the solvable conditionsof this problem and solution form have been presented. Finally, the corre
11、spondingexamples are given.In the end, the definition of the second kind of inverse generalized eigenvalueproblem for symmetric tridiagonal matrix has been proposed and then the solvableconditions of problem and solution
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 16480.擬三對(duì)角矩陣的逆特征值問(wèn)題
- 廣義中心對(duì)稱矩陣的特征值反問(wèn)題研究.pdf
- 實(shí)對(duì)稱五對(duì)角矩陣的逆特征值問(wèn)題.pdf
- 廣義周期Jacobi矩陣特征值反問(wèn)題.pdf
- 對(duì)含參量的實(shí)對(duì)稱矩陣特征值反問(wèn)題的研究.pdf
- Jacobi矩陣的特征值反問(wèn)題.pdf
- 三對(duì)角矩陣和P矩陣的研究.pdf
- Jacobi矩陣的特征值反問(wèn)題及其它反問(wèn)題.pdf
- 關(guān)于Toeplitz矩陣特征值反問(wèn)題的研究.pdf
- 幾類特殊三對(duì)角陣與矩陣方程x39;tat=b的矩陣反問(wèn)題
- 實(shí)次對(duì)稱帶狀矩陣特征值反問(wèn)題及其最佳逼近.pdf
- 幾類非負(fù)矩陣特征值反問(wèn)題.pdf
- Jacobi矩陣及周期Jacobi矩陣特征值反問(wèn)題.pdf
- 幾類特殊矩陣特征值反問(wèn)題與矩陣方程問(wèn)題.pdf
- 15885.若干代數(shù)特征值反問(wèn)題
- 行(列)對(duì)稱矩陣的廣義逆特征值問(wèn)題及其最佳逼近.pdf
- 34027.關(guān)于hermitiantoeplitz矩陣特征值反問(wèn)題的研究
- 兩類結(jié)構(gòu)矩陣的特征值反問(wèn)題.pdf
- 29835.關(guān)于某些三對(duì)角矩陣的研究
- 矩陣特征值擾動(dòng)的若干問(wèn)題.pdf
評(píng)論
0/150
提交評(píng)論