6.2 中位數與眾數_第1頁
已閱讀1頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、6.2 中位數與眾數 中位數與眾數學習目標 學習目標知識與技能:掌握中位數、眾數的概念,會求出一組數據的中位數與眾數;能結合具體情境體會平均數、中位數和眾數三者的區(qū)別,能初步選擇恰當的數據代表對數據作出自己的正確評判。過程與方法:通過解決實際問題的過程,區(qū)分刻畫“平均水平”的三個數據代表,讓學生獲得一定的評判能力,進一步發(fā)展其數學應用能力。情感態(tài)度與價值觀:將知識的學習放在解決問題的情境中,通過數據分析與處理,體會數學與現實生活的聯系,

2、培養(yǎng)學生求真的科學態(tài)度。學習重點: 學習重點:求出一組數據的中位數、眾數學習難點: 學習難點:利用平均數、中位數、眾數解決問題學習過程 學習過程第一環(huán)節(jié):情境引入 第一環(huán)節(jié):情境引入 (5 分鐘,學生小組合作探究) 分鐘,學生小組合作探究)內容: 內容:在當今信息時代,信息的重要性不言而喻,人們經常要求一些信息“用數據說話” ,所以對數據作出恰當的評判是很重要的。下面請看一例:某次數學考試,小英得了 78 分。全班共 32 人,其他同學

3、的成績?yōu)?1 個 100 分,4 個90 分,22 個 80 分,2 個 62 分,1 個 30 分,1 個 25 分。小英計算出全班的平均分為 77.4 分,所以小英告訴媽媽說,自己這次數學成績在班上處于“中上水平” 。小英對媽媽說的情況屬實嗎?你對此有何看法?引導學生展開討論,作出評判:平均數是我們常用的一個數據代表,但是在這里,利用平均數把倒數第五的成績說成處于班級的“中上水平”顯然是不屬實的。原因是全班的平均分受到了兩個極端數據

4、 30 分和 25 分的影響,利用平均數反應問題就出現了偏差。怎樣說明這個問題呢?我們需要學習新的數據代表—中位數與眾數。第二環(huán)節(jié):合作探究( 第二環(huán)節(jié):合作探究(20 20 分鐘,教師點撥,學生合作解決,全 分鐘,教師點撥,學生合作解決,全班交流) 班交流)內容: 內容:某公司員工的月工資如下:員 工 經理 副經理 職 員A 職 員B 職 員C 職 員D 職 員E 職 員F 雜 工G月 工 資 /元 6000 4000 1700 13

5、00 1200 1100 1100 1100 500經理說:我公司員工收入很高,月平均工資為 2000 元。職員 C 說:我的工資是 1200 元,在公司算中等收入。職員 D 說:我們好幾個人工資都是 1100 元。一位應聘者心里在琢磨:這個公司員工收入到底怎樣呢?你怎樣看待該公司員工的收入?學生四人小組討論,交流自己的看法,教師對表現積極的學生予以鼓勵。在學生討論交流的基礎上,教師進行點撥:上述問題中,經理、職員 C、職員 D 從不同

6、的角度描述了該公司的收入情況:(1)月平均工資 2000 元,指所有員工工資的平均數是 2000 元,但只有正副經理的工資比平均工資高,是他兩人的工資把平均工資“拉”高了。(2)職員 C 的工資是 1200 元,恰好居于所有員工工資的“正中間” (恰有 4 人的工資比他高,有 4 人的工資比他低) ,我們稱 1200 元是這組數據的中位數。(3)9 個員工中有 3 個人的工資為 1100 元,出現的次數最多,我們稱 1100 元是這組數

7、據的眾數。議一議:你認為用哪個數據表示該公司員工收入的平均水平更合適?讓學生討論,充分發(fā)表不同的觀點,然后歸納起來:用中位數 1200 元或眾數 1100 元表示該公司員工收入的平均水平更合適些,因為平均數 2000 元受到了極端值的影響。結合上述問題的探究,引入中位數、眾數的概念: 一般地,n 個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。一組數據中出現次數最多的那個數據叫做這組數據的

8、眾數。教師指出:平均數、中位數、眾數都是數據的代表,它們刻畫了一組數據的“平均水平” 。讓學生用中位數、眾數的概念回頭望,解釋引例中小英的數學成績的問題。第三環(huán)節(jié):運用提高( 第三環(huán)節(jié):運用提高(10 10 分鐘,學生獨立完成,全班交流) 分鐘,學生獨立完成,全班交流)內容: 內容:1. 對于一組數據:3,3,2,3,6,3,10,3,6,3,2,下列說法正確的是( )A. 這組數據的眾數是 3;B. 這組數據的眾數與中位數的數值不

9、等;C. 這組數據的中位數與平均數的數值相等;D. 這組數據的平均數與眾數的數值相等。答案:A2. 2000—2001 賽季上海東方大鯊魚籃球隊隊員身高的中位數、眾數分別是多少?(課本 213 頁) 3.(1)你課前所調查的 50 名男同學所穿運動鞋尺碼的平均數、中位數、眾數分別是多少?(2)你認為學校商店應多進哪種尺碼的男式運動鞋?第四環(huán)節(jié):課堂小結( 第四環(huán)節(jié):課堂小結(5 分鐘, 分鐘,學生思考問題,總結回

10、顧) 學生思考問題,總結回顧)內容: 內容:議一議:平均數、中位數和眾數有哪些特征?學生討論交流,師生共同總結特征:1. 用平均數作為 一組數據的代表,比較可靠和穩(wěn)定,它與這組數據中的每一個數都有關系,對這組數據所包含的信息的反映最為充分,因此在現實生活中較為常用,但它容易受極端值的影響。 2. 用中位數作為一組數據的代表,可靠性比較差,它不能充分利用所有數據的信息,但它不受極端值的影響,當一組數據中有個別數據變動較大時,可用它來描述這

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論