版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、湘潭大學(xué)碩士學(xué)位論文泛Sierpinski墊片的Hausdorff測(cè)度姓名:周志英申請(qǐng)學(xué)位級(jí)別:碩士專(zhuān)業(yè):應(yīng)用數(shù)學(xué)指導(dǎo)教師:喻祖國(guó)20060501IIABSTRACT The concepts of Hausdorff dimension and measure have been introduced for near one hundred years. There are lots of works have been done
2、on the calculation and estimation of Hausdorff dimension, such as the result of self-similar set which satisfies open set condition. But, there are not many results about calculation of Hausdorff measure. By far, except
3、of few, the Hausdorff measure of many fractals can not be worked out, including that of self-similar sets [2]. In this thesis, the problem of calculating the Hausdorff measure for general Sierpinski gasket is discussed.
4、We start from an unit equilateral triangle S0 in 2 R . Three small equilateral triangles are made in the three angles of S0 with edge length a (a<1/2). The union set of the three small triangles is denoted as S1. The
5、n for each small triangle, this process is repeated to get nine small equilateral triangles. The union set of these nine small triangles is denoted as S2. Then let this process to go infinite. And we get S0?S1?S2?…?Sn?…
6、. then ∩∞= =0 n n S Sis called generaizedlized Sierpinski gasket made from S0. The Hausdorff dimension of S is -log3/loga. If a=1/2, S is the normal Sierpinski gasket. Its exact Hausdorff measure has not obtained althou
7、gh many researchers studied it using many methods. In this thesis, the problem of calculating the Hausdorff measure for generalized Sierpinski gasket with a∈(1/4,1/2) is discussed using the method of Zuolin Zhou and Zeng
8、xi Zhang. In Chapter 1, we introduce the definitions of Hausdorff dimension and Hausdorff measure, and some related definitions and theorems. In Chapter 2, we introduce self-similar sets and open set condition. In Chapte
9、r 3, we introduce our main results. When the similitude ratio a∈[1/4,1/3], we denote s=-log3/loga as the Hausdorff dimension of the general Sierpinski gasket. It is proved that the Hausdorff measure of the general Sierpi
10、nski gasket is equal to 1. In addition, when the similitude ratio a∈(1/3,1/2), a good upper bound of the Hausdorff measure of general Sierpinski gasket is given. Key words: Hausdorff dimension; Hausdorff measure; general
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 一類(lèi)廣義Sierpinski墊片的Hausdorff測(cè)度.pdf
- Sierpinski地毯的Hausdorff測(cè)度.pdf
- Sierpinski地毯和Sierpinski正方體海綿的Hausdorff測(cè)度上界估計(jì).pdf
- 廣義Sierpinski-墊的Hausdorff測(cè)度與維數(shù)的研究.pdf
- 具有線性結(jié)構(gòu)的Sierpinski毯子集的Hausdorff維數(shù).pdf
- 一類(lèi)Moran集的Hausdorff測(cè)度及等價(jià)度量意義下的中心Hausdorff測(cè)度.pdf
- 魔鬼階梯的Hausdorff測(cè)度與維數(shù).pdf
- 一般Sierpinski墊片轉(zhuǎn)移矩陣的性質(zhì).pdf
- Hausdorff測(cè)度的規(guī)范化處理.pdf
- 某些自相似集的Hausdorff測(cè)度研究.pdf
- 兩種特殊Sierpinski墊片上的調(diào)和結(jié)構(gòu).pdf
- 自相似分形集的Hausdorff測(cè)度的估算.pdf
- 某類(lèi)Hausdorff測(cè)度的柯西變換的泰勒系數(shù).pdf
- 一類(lèi)廣義Cantor集的Hausdorff測(cè)度.pdf
- 幾類(lèi)分形集合Hausdorff測(cè)度與圖像的研究.pdf
- 自相似分形集Hausdorff測(cè)度的若干結(jié)果.pdf
- 某類(lèi)Hausdorff測(cè)度的柯西變換的泰勒系數(shù)估計(jì).pdf
- 自由邊界問(wèn)題相關(guān)的Hausdorff測(cè)度估計(jì).pdf
- 一類(lèi)非齊次Moran集的Hausdorff測(cè)度.pdf
- 一些分形集的Hausdorff測(cè)度計(jì)算.pdf
評(píng)論
0/150
提交評(píng)論