版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、重慶大學(xué)碩士學(xué)位論文差分方程及離散神經(jīng)網(wǎng)絡(luò)的動力學(xué)性質(zhì)分析姓名:張渝申請學(xué)位級別:碩士專業(yè):計算機軟件與理論指導(dǎo)教師:楊小帆20060401重慶大學(xué)碩士學(xué)位論文 英文摘要 II ABSTRACT Modern theory of dynamical systems, which originated at the end of the
2、19th century with fundamental questions concerning the stability and evolution of the solar system, addresses the long-term behavior of evolving systems. In recent years, there has been a marked increase of research inte
3、rest in dynamical systems, and the obtained results apply in areas such as physics, biology, meteorology, astronomy, economics, etc. There are two fundamentally different dynamical systems: those with discrete time varia
4、ble and those with continuous time variable. This dissertation aims at the study of dynamical properties of discrete-time dynamical systems, which include difference equations and discrete neural networks. This dissertat
5、ion begins with the state-of-the-art of dynamical systems, followed by the fundamental theory that will be used throughout this dissertation. The research results are presented in chapters 3 and 4. Chapter 3 addresses t
6、he dynamical properties of difference equations. First, a nonlinear difference equation system is investigated, and it is proved that the positive solutions may be unbounded or converge to a unique equilibrium depending
7、on the values of the system parameters. Then a difference equation with maximum is considered, and some results concerned with the eventually periodicity of the solutions are obtained (especially when the parameters and
8、initial conditions are allowed to be negative). Chapter 4 is intended to study the dynamical properties of a class of discrete neural networks. By introducing the result in the continuous-time neural networks, a discret
9、e-time analogue is formulated by discretizing the continuous-time networks and a sufficient condition is obtained for ensuring the global exponential robust stability of the equilibrium point. Simulation experiments are
10、 carried out. Experimental results not only illustrate the dynamical behavior of the solutions, but also validate the presented results. Keywords: Discrete Dynamical System, Difference Equations, Discrete Neural Networ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幾類差分方程的動力學(xué)性質(zhì).pdf
- 幾類差分方程的動力學(xué)性質(zhì)研究.pdf
- 幾類離散神經(jīng)網(wǎng)絡(luò)模型的動力學(xué)分析.pdf
- 幾類微分、差分方程動力學(xué)性質(zhì)的研究.pdf
- 幾類有理差分方程動力學(xué)性質(zhì)的研究.pdf
- 混沌離散神經(jīng)網(wǎng)絡(luò)的動力學(xué)行為.pdf
- 一類二元離散神經(jīng)網(wǎng)絡(luò)的動力學(xué)性質(zhì).pdf
- 細(xì)胞神經(jīng)網(wǎng)絡(luò)的長時期動力學(xué)性質(zhì)分析.pdf
- 一些差分方程的動力學(xué)性質(zhì)研究.pdf
- 幾類時滯差分、微分方程神經(jīng)網(wǎng)絡(luò)模型的動力學(xué)分析.pdf
- S盒的神經(jīng)網(wǎng)絡(luò)實現(xiàn)及其動力學(xué)性質(zhì).pdf
- 18883.幾類非線性差分方程動力學(xué)性質(zhì)的研究
- 高階模糊細(xì)胞神經(jīng)網(wǎng)絡(luò)動力學(xué)性質(zhì)研究.pdf
- 幾類二元神經(jīng)網(wǎng)絡(luò)模型的動力學(xué)性質(zhì).pdf
- 時滯神經(jīng)網(wǎng)絡(luò)的動力學(xué)分析.pdf
- 瞬時混沌神經(jīng)網(wǎng)絡(luò)和一類時滯微分方程的動力學(xué)性質(zhì)分析.pdf
- 幾類神經(jīng)網(wǎng)絡(luò)模型的動力學(xué)分析
- 遞歸神經(jīng)網(wǎng)絡(luò)的動力學(xué)行為分析.pdf
- 幾類神經(jīng)網(wǎng)絡(luò)模型的動力學(xué)分析.pdf
- 高階延時神經(jīng)網(wǎng)絡(luò)動力學(xué).pdf
評論
0/150
提交評論