版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 動(dòng)力電池組管理系統(tǒng)關(guān)鍵技術(shù)研究</p><p> 重慶大學(xué)博士學(xué)位論文</p><p><b> 學(xué)生姓名:胡銀全</b></p><p> 指導(dǎo)教師:劉和平教授</p><p><b> 專</b></p><p><b> 業(yè):電
2、氣工程</b></p><p><b> 學(xué)科門類:工</b></p><p><b> 學(xué)</b></p><p> 重慶大學(xué)電氣工程學(xué)院</p><p><b> 二 O一三年四月</b></p><p> Key Techno
3、logies Research of Power Battery</p><p> Pack Management System</p><p> A Thesis Submitted to Chongqing University</p><p> in Partial Fulfillment of the Requirement for the</p
4、><p> Doctor’s Degree of Engineering</p><p><b> By</b></p><p> Hu Yin Quan</p><p> Supervised by Prof. Liu He Ping</p><p> Specialty: Electri
5、cal Engineering</p><p> School of Electrical Engineering of Chongqing University,</p><p> Chongqing, China</p><p> April, 2013</p><p><b> 中文摘要</b></p
6、><p><b> 摘</b></p><p><b> 要</b></p><p> 動(dòng)力電池組管理系統(tǒng)是電動(dòng)汽車中必備的重要零部件,與動(dòng)力電池組共同構(gòu)</p><p> 成電池系統(tǒng),為電動(dòng)汽車提供動(dòng)力。然而,在動(dòng)力電池組管理系統(tǒng)方面仍然存在</p><p> 許多亟
7、待解決的問(wèn)題,比如充放電過(guò)程管理不當(dāng)、荷電狀態(tài)(SOC)估計(jì)精度低、</p><p> 均衡充電速度慢等,也是目前電動(dòng)汽車動(dòng)力電池組管理系統(tǒng)的研究熱點(diǎn)。動(dòng)力電</p><p> 池組管理系統(tǒng)只有解決這些問(wèn)題,才能推動(dòng)電動(dòng)汽車的快速發(fā)展。因此,系統(tǒng)深</p><p> 入地開(kāi)展動(dòng)力電池組管理系統(tǒng)的關(guān)鍵技術(shù)研究,具有重要的理論意義和工程實(shí)用</p>
8、<p> 價(jià)值。論文以磷酸鐵鋰(LiFePO4)動(dòng)力電池為研究對(duì)象,主要從電池充電特性與</p><p> 充電結(jié)束判定、電池模型建立與參數(shù)辨識(shí)、電池 SOC在線估計(jì)算法和電池組均衡</p><p> 充電控制策略等方面進(jìn)行了系統(tǒng)研究。論文取得的主要研究成果如下:</p><p> 針對(duì)截止電壓對(duì)電池充電速度、循環(huán)壽命的影響問(wèn)題,建立了動(dòng)力電池充放
9、</p><p> 電實(shí)驗(yàn)平臺(tái),進(jìn)行了大量理論分析和充放電特性實(shí)驗(yàn)研究,分析了現(xiàn)有充電方式</p><p> 各充電階段對(duì)電池充電容量的貢獻(xiàn)大小,分析了初始 SOC、充電電流對(duì)電池充電</p><p> 截止電壓的影響,提出一種根據(jù)初始 SOC、充電電流來(lái)智能的設(shè)定充電截止電壓、</p><p> 充電方式轉(zhuǎn)換的充電結(jié)束動(dòng)態(tài)判據(jù)。通
10、過(guò)實(shí)驗(yàn)驗(yàn)證,結(jié)果表明:基于多參數(shù)充電</p><p> 結(jié)束動(dòng)態(tài)判據(jù)能夠有效減小動(dòng)力電池?fù)p壞的危險(xiǎn),延長(zhǎng)動(dòng)力電池的循環(huán)壽命。這</p><p> 種充電結(jié)束動(dòng)態(tài)判據(jù)既可以滿足動(dòng)力電池常規(guī)充電的需要也可以滿足快速充電的</p><p> 需要,具有重要的工程實(shí)用價(jià)值。</p><p> 為保證等效模型能夠準(zhǔn)確描述動(dòng)力電池工作外特性,在動(dòng)
11、力電池充放電特性</p><p> 研究基礎(chǔ)上,分析了動(dòng)力電池幾種等效模型的優(yōu)缺點(diǎn),提出 LiFePO4動(dòng)力電池的二</p><p> 階 RC等效電路模型是比較精確、易于參數(shù)辨識(shí)和工程應(yīng)用的等效模型,并對(duì)二階</p><p> RC等效電路模型進(jìn)行了改進(jìn),采用最小二乘法對(duì)模型參數(shù)進(jìn)行了辨識(shí)。實(shí)驗(yàn)研究</p><p> 證實(shí)了采用改進(jìn)
12、二階 RC等效電路模型能夠準(zhǔn)確模擬動(dòng)力電池充放電特性,為采用</p><p> 等效電路模型的動(dòng)力電池 SOC在線估計(jì)奠定了基礎(chǔ)。</p><p> 針對(duì)常規(guī) SOC定義中 SOC值可能出現(xiàn)負(fù)值的問(wèn)題,提出相對(duì)最大可用容量概</p><p> 念,并對(duì) SOC進(jìn)行了重新定義。分析了幾種常用 SOC估計(jì)算法的優(yōu)缺點(diǎn),分析了</p><p&
13、gt; 擴(kuò)展卡爾曼濾波(EKF)算法的不足,并對(duì) EKF 算法進(jìn)行了改進(jìn),分析了自適應(yīng)</p><p> 擴(kuò)展卡爾曼濾波(AEKF)算法的優(yōu)點(diǎn),提出一種根據(jù)改進(jìn)二階 RC等效電路模型</p><p> 利用改進(jìn) AEKF算法對(duì)動(dòng)力電池 SOC進(jìn)行精確在線估計(jì)的算法。研究結(jié)果表明:</p><p> 該算法能夠解決常規(guī) SOC估計(jì)算法精度低、抗干擾性差的問(wèn)
14、題,對(duì) SOC在線估計(jì)</p><p> 的工程應(yīng)用具有重要的參考價(jià)值。</p><p> 為解決電池組常規(guī)均衡充電方法均衡速度慢、能量損耗大、影響循環(huán)壽命等</p><p><b> I</b></p><p> 重慶大學(xué)博士學(xué)位論文</p><p> 問(wèn)題,歸納了幾種常用均衡充電裝
15、置的優(yōu)缺點(diǎn),分析了根據(jù)電壓實(shí)施均衡充電方</p><p> 法的不足,在對(duì)動(dòng)力電池 SOC進(jìn)行精確估計(jì)的基礎(chǔ)上,提出一種通過(guò)能量非耗散</p><p> 型電路和能量耗散型電路相結(jié)合,依據(jù)電池 SOC進(jìn)行電池組均衡充電控制的算法。</p><p> 實(shí)驗(yàn)結(jié)果表明:該均衡充電控制算法能夠保證電池組中各單節(jié)電池 SOC基本一致,</p><p&
16、gt; 縮短均衡充電時(shí)間,提高均衡充電效率。</p><p> 針對(duì)動(dòng)力電池間連接導(dǎo)線松動(dòng)造成電池溫度過(guò)高、自燃等問(wèn)題,提出一種動(dòng)</p><p> 力電池間連接導(dǎo)線松動(dòng)檢測(cè)的方法。該檢測(cè)方法能提高電池組供電的可靠性,避</p><p> 免電池間連接導(dǎo)線因接觸電阻過(guò)大引起的局部高溫或電池自燃的發(fā)生。為減小大</p><p> 功率
17、充放電對(duì)動(dòng)力電池組循環(huán)壽命的影響,分析了幾種電池組最大可充放電功率</p><p> 估計(jì)方法的優(yōu)缺點(diǎn),在通過(guò)電池組均衡充電,改善電池組不一致性的基礎(chǔ)上,提</p><p> 出一種改進(jìn)的動(dòng)力電池組最大可充放電功率估計(jì)方法。該估計(jì)方法能夠估計(jì)動(dòng)力</p><p> 電池組在約束條件下的最大可充放電功率,為極限加速、爬坡、快速充放電和再</p>&
18、lt;p> 生制動(dòng)等運(yùn)行狀態(tài)提供電池的安全控制依據(jù),避免動(dòng)力電池的損壞。</p><p> 關(guān)鍵詞:電動(dòng)汽車;動(dòng)力電池組;電池組管理系統(tǒng);荷電狀態(tài)估計(jì);均衡充電</p><p><b> II</b></p><p><b> 英文摘要</b></p><p><b> A
19、BSTRACT</b></p><p> Battery management system (BMS) is an important prerequisite component in</p><p> electric vehicle (EV), with battery pack together to form the battery sy
20、stem, to provide</p><p> power for EV. However, there are still many urgent problems in BMS, such as improper</p><p> management of charge and discharge process, low state of charge (S
21、OC) estimation</p><p> accuracy, slow equalizing charge speed, and so on; which are also research hotspots in</p><p> BMS. Only by solving these problems of BMS, can the deve
22、lopment of EV be</p><p> promoted. Therefore, in-depth research of key technologies has important theoretical</p><p> significance and practical value in BMS. In this paper, LiFeP
23、O4 batteries are set as the</p><p> object of current study, battery charge characteristics and charge end determination,</p><p> battery mathematic model and parameters identificati
24、on, battery SOC online estimation</p><p> algorithm, and battery pack equalizing charge control strategy have been systematically</p><p> studied. The primary achievements of this paper are
25、 as follow:</p><p> Based on the effect of cut-off voltage on charge speed and cycle life of the battery,</p><p> charge and discharge experimental platforms are established; a
26、large number of</p><p> theoretical analysis and experimental research has been done; charge capacity</p><p> contribution of each charge stage is discussed in the
27、 existing charge methods; the</p><p> influence of initial SOC and charge current on charge cut-off voltage is analyzed. A</p><p> charge end dynamic criterion of power battery i
28、s proposed, that charge cut-off voltage</p><p> and charge mode conversion are intelligently set according to initial SOC and charge</p><p> current. In the end, the correctness and a
29、pplication value is verified by test results. This</p><p> charge end dynamic criterion not only guaranties the charge rate but also limits the risk</p><p> of damaging power battery, whi
30、ch means the cycle life of power battery is prolonged.</p><p> In order to ensure equivalent model can accurately describe external characteristics</p><p> of power battery work, many eq
31、uivalent models of battery are discussed based on</p><p> charge and discharge characteristics researches of power battery, proposed that the</p><p> second-order RC equivalen
32、t circuit model of LiFePO4 power battery is more accurate,</p><p> easy parameter identification and engineering applications, and for the lack of</p><p> second-order RC
33、 equivalent circuit model, the model has been improved, and the</p><p> improved model’s parameters are accurately identified by the method of least squares.</p><p> The experim
34、ental results show: charge and discharge characteristics of power battery</p><p> are accurately simulated by improved second-order RC equivalent circuit model, and</p><p><b>
35、 III</b></p><p> 重慶大學(xué)博士學(xué)位論文</p><p> the foundation of power battery SOC estimation using equivalent circuit model is laid.</p><p> Battery SOC is redefined to solve some
36、 problems in conventional SOC definition,</p><p> and concept of relative maximum available capacity is proposed. The advantages and</p><p> disadvantages of several SOC estimation al
37、gorithms are discussed, EKF algorithm has</p><p> been improved for the lack of EKF algorithm, the advantages of AEKF algorithm is</p><p> analyzed, and a method of accurate SOC onlin
38、e estimation of power battery is proposed,</p><p> that according to improved second-order RC equivalent circuit model, improved AEKF</p><p> algorithm is applied to estimate power battery
39、 SOC. The experimental results show: the</p><p> SOC estimation method solves low accuracy and poor anti-jamming problems of</p><p> conventional SOC estimation and has an
40、 accurate reference value in engineering</p><p> applications of the SOC online estimation.</p><p> In order to solve low equalizing charge speed and large energy loss of conventional<
41、/p><p> equalizing charge methods, the advantages and disadvantages of several equalizing</p><p> charge devices are summarized, the lack of equalizing charge methods based on th
42、e</p><p> batteries voltages is analyzed, on the basis of accurate estimation of power battery SOC,</p><p> a control algorithm of active equalizing charge of power battery pack is propose
43、d, that</p><p> is combined by the energy non-dissipative type circuit and the energy dissipation type</p><p> circuit, meanwhile the equalizing charge process is controlled according to
44、 battery SOC.</p><p> The experimental results show: the equalizing charge control algorithm to ensure that all</p><p> batteries SOC is basically the same, shorten the equalizing charge time
45、.</p><p> A detection method of connecting wires loose between the batteries is proposed for</p><p> connecting wires loose problems. The detection method can improve the reliability of&
46、lt;/p><p> batteries supply, to avoid the high temperature of batteries connecting wires and</p><p> spontaneous combustion of the batteries. In order to reduce the effect of the l
47、arge power</p><p> charge and discharge on the cycle life of battery pack, on the basis of equalizing charge</p><p> of battery pack, a method of the maximum charge and discharge power
48、 estimation of</p><p> battery pack is proposed. The proposed estimation method can estimate the maximum</p><p> charge and discharge power of power battery pack under the constrain
49、conditions, and</p><p> provide the control basis for limit acceleration, climbing, fast charge discharge and</p><p> regenerative braking, and avoid the damage of power battery.<
50、/p><p> Keywords: Electric vehicles; Power battery pack; Battery pack management system;</p><p> SOC estimation; Equalizing charge</p><p><b> IV</b></p><
51、;p><b> 目</b></p><p><b> 錄</b></p><p><b> 目</b></p><p><b> 錄</b></p><p> 中文摘要....................................
52、..............................................................................................I</p><p> 英文摘要..................................................................................................
53、............................. III</p><p> 1 緒 論................................................................................................................................. 1</p><p> 1.
54、1 論文研究的目的和意義................................................................................................... 1</p><p> 1.2 車載動(dòng)力電池組管理系統(tǒng)相關(guān)研究綜述 ..............................................................
55、......... 2</p><p> 1.2.1 動(dòng)力電池組管理系統(tǒng)的研究現(xiàn)狀 ........................................................................... 2</p><p> 1.2.2 目前存在的主要問(wèn)題..................................................
56、............................................. 4</p><p> 1.3 論文研究的主要內(nèi)容....................................................................................................... 6</p><p> 2 動(dòng)力電池充電結(jié)
57、束判定方法................................................................................. 9</p><p> 2.1 引言.....................................................................................................
58、.............................. 9</p><p> 2.2 磷酸鐵鋰電池的反應(yīng)原理及容量衰減 ........................................................................... 9</p><p> 2.2.1 電池的反應(yīng)原理...............................
59、........................................................................ 9</p><p> 2.2.2 電池的容量衰減機(jī)理............................................................................................. 11</p>
60、<p> 2.3 實(shí)驗(yàn)方法與儀器............................................................................................................. 12</p><p> 2.4 磷酸鐵鋰電池性能測(cè)試................................................
61、................................................. 14</p><p> 2.4.1 電池電壓與倍率特性............................................................................................. 14</p><p> 2.4.2 放電深度對(duì)
62、電池充電的影響................................................................................. 18</p><p> 2.4.3 截止電壓與電池充電容量..................................................................................... 21&
63、lt;/p><p> 2.4.4 溫度對(duì)電池性能的影響......................................................................................... 22</p><p> 2.5 動(dòng)力電池充電結(jié)束的動(dòng)態(tài)判定..................................................
64、................................... 23</p><p> 2.5.1 充電結(jié)束動(dòng)態(tài)判定方法的提出............................................................................. 24</p><p> 2.5.2 充電結(jié)束動(dòng)態(tài)判定方法的驗(yàn)證..................
65、........................................................... 29</p><p> 2.6 本章小結(jié)......................................................................................................................... 31<
66、;/p><p> 3 動(dòng)力電池模型的建立與參數(shù)辨識(shí) .................................................................... 33</p><p> 3.1 引言..................................................................................
67、............................................... 33</p><p> 3.2 等效電路模型的建立..................................................................................................... 33</p><p> 3.2.1 幾
68、種電池模型的對(duì)比............................................................................................. 33</p><p> 3.2.2 二階 RC等效電路模型的提出.........................................................................
69、..... 37</p><p> 3.3 等效電路模型的參數(shù)辨識(shí)............................................................................................. 42</p><p> 3.3.1 開(kāi)路電壓的快速估計(jì).......................................
70、...................................................... 42</p><p> 3.3.2 歐姆內(nèi)阻和極化參數(shù)辨識(shí)..................................................................................... 47</p><p><b> V&l
71、t;/b></p><p> 重慶大學(xué)博士學(xué)位論文</p><p> 3.4 等效電路模型的實(shí)驗(yàn)驗(yàn)證............................................................................................. 50</p><p> 3.4.1 充電仿真電壓與實(shí)驗(yàn)電壓對(duì)比...
72、.......................................................................... 50</p><p> 3.4.2 放電仿真電壓與實(shí)驗(yàn)電壓對(duì)比............................................................................. 51</p><p>
73、 3.5 本章小結(jié)......................................................................................................................... 54</p><p> 4 動(dòng)力電池 SOC在線估計(jì)算法..............................................
74、.............................. 55</p><p> 4.1 引言................................................................................................................................. 55</p><p> 4
75、.2 SOC的定義方法 ............................................................................................................ 55</p><p> 4.2.1 SOC的傳統(tǒng)定義...........................................................
76、.......................................... 55</p><p> 4.2.2 SOC的重新定義..................................................................................................... 57</p><p> 4.2.3 電
77、池組 SOC的確定............................................................................................... 58</p><p> 4.3 幾種 SOC估計(jì)算法的比較 .....................................................................
78、..................... 58</p><p> 4.4 卡爾曼濾波算法分析..................................................................................................... 60</p><p> 4.4.1 擴(kuò)展卡爾曼濾波原理..................
79、........................................................................... 61</p><p> 4.4.2 可變?cè)鲆嬉蜃? 的引入.......................................................................................... 63</p>
80、;<p> 4.4.3 改進(jìn)自適應(yīng)擴(kuò)展卡爾曼濾波算法......................................................................... 64</p><p> 4.5 新的 SOC在線估計(jì)算法 .....................................................................
81、......................... 65</p><p> 4.5.1 系統(tǒng)的狀態(tài)空間表達(dá)............................................................................................. 65</p><p> 4.5.2 系統(tǒng)穩(wěn)定性分析......................
82、............................................................................... 67</p><p> 4.5.3 基于電池模型的改進(jìn) AEKF算法 SOC在線估計(jì)............................................... 69</p><p> 4.6 新的 SOC
83、在線估計(jì)算法的實(shí)驗(yàn)驗(yàn)證........................................................................... 70</p><p> 4.6.1 初始 SOC為 1的 SOC估計(jì)分析 ......................................................................... 70<
84、;/p><p> 4.6.2 魯棒性測(cè)試分析..................................................................................................... 71</p><p> 4.6.3 脈沖干擾測(cè)試分析..............................................
85、................................................... 72</p><p> 4.6.4 車載放電實(shí)驗(yàn)分析................................................................................................. 74</p><p> 4.7 本章
86、小結(jié)......................................................................................................................... 76</p><p> 5 動(dòng)力電池組均衡充電控制策略 ......................................................
87、................... 77</p><p> 5.1 引言................................................................................................................................. 77</p><p> 5.2 兩種均衡充電電路對(duì)比
88、................................................................................................. 77</p><p> 5.2.1 能量耗散型電路....................................................................................
89、................. 77</p><p> 5.2.2 能量非耗散型電路................................................................................................. 78</p><p> 5.3 電池組均衡充電方法探討.........................
90、.................................................................... 79</p><p> 5.3.1 根據(jù)電壓均衡充電方法......................................................................................... 79</p><p&
91、gt; 5.3.2 根據(jù) SOC均衡充電方法....................................................................................... 80</p><p> 5.3.3 不同運(yùn)行狀態(tài)下電池組均衡充電..............................................................
92、........... 80</p><p><b> VI</b></p><p><b> 目</b></p><p><b> 錄</b></p><p> 5.4 動(dòng)力電池組不一致性分析......................................
93、....................................................... 81</p><p> 5.4.1 電壓分散性實(shí)驗(yàn)..................................................................................................... 81</p><p>
94、 5.4.2 補(bǔ)充充電實(shí)驗(yàn)......................................................................................................... 82</p><p> 5.4.3 實(shí)驗(yàn)結(jié)果分析................................................................
95、......................................... 83</p><p> 5.5 均衡充電裝置的改進(jìn)..................................................................................................... 84</p><p> 5.6 均衡充電控制策略分
96、析................................................................................................. 85</p><p> 5.6.1 電池組充電系統(tǒng)的硬件設(shè)計(jì)..............................................................................
97、... 85</p><p> 5.6.2 新均衡充電控制算法............................................................................................. 86</p><p> 5.6.3 新均衡充電控制算法驗(yàn)證........................................
98、............................................. 90</p><p> 5.7 本章小結(jié)......................................................................................................................... 93</p><p
99、> 6管理系統(tǒng)設(shè)計(jì)與最大充放電功率估計(jì)........................................................... 95</p><p> 6.1 引言........................................................................................................
100、......................... 95</p><p> 6.2 電池組管理系統(tǒng)設(shè)計(jì)..................................................................................................... 95</p><p> 6.2.1 管理系統(tǒng)硬件設(shè)計(jì)...............
101、.................................................................................. 95</p><p> 6.2.2 管理系統(tǒng)軟件設(shè)計(jì).................................................................................................
102、98</p><p> 6.3 電池間連接導(dǎo)線松動(dòng)檢測(cè)........................................................................................... 100</p><p> 6.4 最大可充放電功率估計(jì)................................................
103、............................................... 102</p><p> 6.4.1 常用最大可充放電功率估計(jì)方法 ....................................................................... 102</p><p> 6.4.2 新的最大可充放電功率估計(jì)方法的提出 ...
104、........................................................ 104</p><p> 6.4.3 仿真結(jié)果分析....................................................................................................... 105</p><p&
105、gt; 6.5 本章小結(jié)....................................................................................................................... 107</p><p> 7 總結(jié)及展望......................................................
106、............................................................ 109</p><p> 7.1 論文結(jié)論及創(chuàng)新點(diǎn)....................................................................................................... 109</p>
107、<p> 7.2 論文后續(xù)工作展望....................................................................................................... 111</p><p> 致 謝.............................................................
108、................................................................ 113</p><p> 參考文獻(xiàn)............................................................................................................................
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 動(dòng)力電池組管理系統(tǒng)關(guān)鍵技術(shù)研究博士論文
- 動(dòng)力電池組管理系統(tǒng)關(guān)鍵技術(shù)研究.pdf
- 鋰動(dòng)力電池組均衡技術(shù)研究.pdf
- 動(dòng)力電池主動(dòng)均衡系統(tǒng)關(guān)鍵技術(shù)研究
- 動(dòng)力電池組質(zhì)量測(cè)試系統(tǒng).pdf
- 鋰離子動(dòng)力電池組熱管理系統(tǒng)設(shè)計(jì).pdf
- 電動(dòng)汽車鎳氫動(dòng)力電池系統(tǒng)熱管理關(guān)鍵技術(shù)研究.pdf
- 語(yǔ)音情感識(shí)別若干關(guān)鍵技術(shù)研究博士論文
- 電動(dòng)汽車鎳氫動(dòng)力電容電池組散熱關(guān)鍵技術(shù)研究.pdf
- 燃料電池客車鎳氫動(dòng)力電池組管理系統(tǒng)的研究.pdf
- 某型號(hào)主電池組設(shè)計(jì)關(guān)鍵技術(shù)研究.pdf
- 鋰離子動(dòng)力電池組管理系統(tǒng)的研究和設(shè)計(jì).pdf
- 電動(dòng)汽車鋰動(dòng)力電池組均衡系統(tǒng)充放電技術(shù)研究.pdf
- 電動(dòng)汽車動(dòng)力電池組均衡充放電技術(shù)研究.pdf
- 蓄電池組充電管理系統(tǒng)關(guān)鍵技術(shù)的研究.pdf
- 變壓器分立的動(dòng)力電池組主動(dòng)均衡技術(shù)研究.pdf
- 2018年動(dòng)力電池大會(huì)動(dòng)力電池系統(tǒng)安全高效管理的關(guān)鍵技術(shù)分析
- 動(dòng)力電池組均衡研究與設(shè)計(jì).pdf
- 鋰離子動(dòng)力電池強(qiáng)化傳熱關(guān)鍵技術(shù)研究.pdf
- 電動(dòng)汽車動(dòng)力電池組均衡系統(tǒng)研究.pdf
評(píng)論
0/150
提交評(píng)論