初二數(shù)學(xué)競賽輔導(dǎo)(第05講)[1]_第1頁
已閱讀1頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、第五講第五講恒等式的證明恒等式的證明代數(shù)式的恒等變形是初中代數(shù)的重要內(nèi)容,它涉及的基礎(chǔ)知識較多,主要有整式、分式與根式的基本概念及運算法則,因式分解的知識與技能技巧等等,因此代數(shù)式的恒等變形是學(xué)好初中代數(shù)必備的基本功之一本講主要介紹恒等式的證明首先復(fù)習(xí)一下基本知識,然后進行例題分析兩個代數(shù)式,如果對于字母在允許范圍內(nèi)的一切取值,它們的值都相等,則稱這兩個代數(shù)式恒等把一個代數(shù)式變換成另一個與它恒等的代數(shù)式叫作代數(shù)式的恒等變形恒等式的證明,

2、就是通過恒等變形證明等號兩邊的代數(shù)式相等證明恒等式,沒有統(tǒng)一的方法,需要根據(jù)具體問題,采用不同的變形技巧,使證明過程盡量簡捷一般可以把恒等式的證明分為兩類:一類是無附加條件的恒等式證明;另一類是有附加條件的恒等式的證明對于后者,同學(xué)們要善于利用附加條件,使證明簡化下面結(jié)合例題介紹恒等式證明中的一些常用方法與技巧1由繁到簡和相向趨進由繁到簡和相向趨進恒等式證明最基本的思路是“由繁到簡”(即由等式較繁的一邊向另一邊推導(dǎo))和“相向趨進”(即將

3、等式兩邊同時轉(zhuǎn)化為同一形式)例1已知xyz=xyz,證明:x(1y2)(1z2)y(1x2)(1z2)z(1x2)(1y2)=4xyz分析分析將左邊展開,利用條件xyz=xyz,將等式左邊化簡成右邊證因為xyz=xyz,所以左邊=x(1z2y2y2z2)y(1z2x2x2z2)(1y2x2x2y2)=(xyz)xz2xy2xy2z2yz2yx2yx2z2zy2zx2zx2y2=xyzxy(yx)xz(xz)yz(yz)xyz(xyyzz

4、x)=xyzxy(xyzz)xz(xyzy)yz(xyzx)xyz(xyyzzx)=xyzxyzxyzxyz=4xyz=右邊說明說明本例的證明思路就是“由繁到簡”分析分析用比差法證明左右=0本例中,這個式子具有如下特征:如果取出它的第一項,把其中的字母輪換,即以b代a,c代b,a代c,則可得出第二項;若對第二項的字母實行上述輪換,則可得出第三項;對第三項的字母實行上述輪換,可得出第一項具有這種特性的式子叫作輪換式利用這種特性,可使輪換式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論