版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、該文主要針對多復變數(shù)的幾類全純映射族進行研究,其中包含α次的殆星映射,α次的星形映射,α次的強星形映射,β型螺形映射,一致星形映射和一致凸映射等,另外,還有幾類我們自己定義的映射類:α次的殆β型螺形映射,α次的β型螺形映射和α次的強β型螺形映射等.全文共分六章.第一章我們簡要地介紹了多復變數(shù)幾何函數(shù)論發(fā)展的背景,該文所用到的一些定義和記號,以及該文的主要結(jié)果.在第二章中,我們分別在不同的空間和區(qū)域上推廣了Roper-Suffridge算
2、子,并且證明了α次的殆星性質(zhì)和α次的星形性質(zhì)在這些算子作用之下是不變的.由此,我們可以利用單復變量的α次的殆星函數(shù)和α次的星形函數(shù)構(gòu)造出多復變量的α次的殆星映射和α次的星形映射.第三章通過在cn中的有界星形圓形域和復Banach范數(shù)之下的單位球上建立一些微分不等式,給出了α次的殆星映射的兩個充分判別條件.在第四章中,我們在復Banach空間中的單位球上定義了幾類新的映射:α次的殆β型螺形映射,α次的β型螺形映射和α次的強β型螺形映射,并
3、且證明了它們的增長掩蓋定理.利用這些結(jié)果,可以分別得到β型螺形映射,α次的殆星映射,α次的星形映射和α次的強星形映射的增長掩蓋定理.同時,通過對這幾類映射的研究,我們也可以更清楚地看到它們之間的一些幾何關(guān)系.第五章主要研究多復變數(shù)的一致星形映射和一致凸映射,給出一致凸映射的一個判別準則,并且得到關(guān)于這兩個映射的類似于Harnack不等式的結(jié)果,從而使得有關(guān)這兩類映射的研究內(nèi)容更加豐富.另外,在該文的最后一章,我們還討論了有界星形圓形域上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 多復變數(shù)全純映射的性質(zhì).pdf
- 多復變數(shù)雙全純映射幾類子族在某方向上的偏差定理.pdf
- 多復變數(shù)全純函數(shù)空間及其算子.pdf
- 多復變數(shù)的拋物星形映射.pdf
- 多復變數(shù)雙全純映照子族的性質(zhì)及其之間的關(guān)系.pdf
- 幾個多復變數(shù)全純函數(shù)空間及其復合算子.pdf
- 多復變數(shù)幾何函數(shù)論中某些雙全純映照子族的性質(zhì).pdf
- 多復Green函數(shù)在全純映射迭代中的應(yīng)用.pdf
- 多復變亞純函數(shù)及亞純映射的唯一性定理.pdf
- 幾類復值函數(shù)族的性質(zhì).pdf
- 27050.多復變亞純映射和亞純函數(shù)的唯一性問題
- 多復變中全純函數(shù)空間上的幾個問題.pdf
- 單位圓盤中全純自映射的和.pdf
- 全純映射的高階Schwarz-Pick估計.pdf
- 多復變一類全純映照子族的Fekete-Szeg_不等式及相關(guān)問題的研究.pdf
- 全純函數(shù)子族上的偏差定理.pdf
- 幾類高階線性微分方程亞純解的復振蕩.pdf
- 41912.多復變數(shù)的邊界型schwarz引理及其應(yīng)用
- 關(guān)于某些全純函數(shù)空間的幾類線性算子.pdf
- 幾類全純函數(shù)空間上的加權(quán)復合算子.pdf
評論
0/150
提交評論