2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、本文先利用經(jīng)典的Godunov格式計算歐拉坐標(biāo)下一維壓差方程的數(shù)值解.出人意料的是,當(dāng)黎曼解包含一個弱的后向疏散波和一個強的前向激波時,此格式是不適用的.為了研究這種數(shù)值現(xiàn)象,我們分析了壓差方程的Riemannsolver和Newton-Raphson迭代的收斂性.進一步地,我們采用二分法與相平面分析結(jié)合的方法計算壓差方程的數(shù)值解. 本文接著采用廣義黎曼問題方法計算壓差方程的數(shù)值解.我們的主要目的是想看這個二階(在時間和空間上均

2、是二階)的Godunov類型格式是否能夠避免上面的數(shù)值現(xiàn)象.通過數(shù)值試驗我們發(fā)現(xiàn),當(dāng)壓差方程的黎曼解包含有弱簡單波時,GRP格式也是不適用的. 拉哥朗日坐標(biāo)系下的一維等熵流方程組和前面的壓差方程有著相同的特征值結(jié)構(gòu).為了進一步研究上面的數(shù)值現(xiàn)象,我們推導(dǎo)了等熵流方程組的GRP格式和Godunov格式,并計算此方程組的數(shù)值解.數(shù)值試驗表明,這些Godunov類型格式對只包含強波和一部分包含弱波的黎曼解來說是比較好的,而對于另外一些

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論