版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、近年來,以量子力學(xué)原理為基礎(chǔ)的量子信息理論開啟了信息處理任務(wù)的新紀(jì)元,因為它能夠使很多經(jīng)典物理框架下不可能實現(xiàn)的信息處理任務(wù)成為可能.量子糾纏,作為量子信息處理和量子計算的核心資源之一,已經(jīng)被廣泛地用于檢測量子力學(xué)的非定域性和設(shè)計量子信息處理方案.所以,對兩體或多體之間糾纏狀態(tài)的操作越來越受到科學(xué)家們的關(guān)注,尤其是最大糾纏態(tài)和部分糾纏態(tài)之間的相瓦轉(zhuǎn)化.有時候會直接影響量子信息和計算精確程度,不同于量子力學(xué)中常見的正交投影測量,正定算子值
2、測量是一種不要求測量算子間彼此正交的廣義測量形式.它在量子信息和計算中有巨大的實際應(yīng)用價值.
本文著重研究了對自旋比特實現(xiàn)正定算子值測量的理論方案,并且以這種測量為工具,構(gòu)建了一種實驗上可行的實現(xiàn)糾纏轉(zhuǎn)化的量子線路.在正定算子值測量的實現(xiàn)方案中,我們首先引入一個自旋粒子作為輔助,通過考慮最近鄰比特之間的自旋相瓦作用,利用海森堡自旋鏈系統(tǒng)的自由演化,成功地實現(xiàn)了對單自旋比特的正定算子值測量.而且我們構(gòu)建了方案中所需的一個控制非門
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 算子值框架研究.pdf
- f--拉普拉斯算子和薛定諤算子的特征值估計.pdf
- 高維正定核本征值的估計.pdf
- 插值算子的導(dǎo)數(shù)逼近.pdf
- 高精度擬插值算子構(gòu)造技術(shù)及其應(yīng)用.pdf
- 算子半群及相關(guān)算子族的性質(zhì)和應(yīng)用.pdf
- Laplace算子的高階特征值.pdf
- 35624.弱值和弱測量的推廣及應(yīng)用研究
- 實對稱正定模糊矩陣的模糊特征值.pdf
- 非緊正線性算子的主特征值理論及應(yīng)用.pdf
- 用卷積算子求函數(shù)的跳躍值.pdf
- 幾類微分算子的特征值問題.pdf
- 關(guān)于緊算子的奇異值不等式和可測算子的范數(shù)不等式的研究.pdf
- 空間變化的灰值形態(tài)算子的研究.pdf
- Hilbert空間上的連續(xù)算子值框架.pdf
- 關(guān)于算子值函數(shù)的若干性質(zhì).pdf
- 一類算子主特征值的凸性及其應(yīng)用.pdf
- 4559.dirchletlaplace算子的courant特征值和k最小劃分
- 任意階Laplace算子的特征值估計.pdf
- 增生算子與單調(diào)算子的特征值問題及擾動定理.pdf
評論
0/150
提交評論