版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1989年Salehi提出了光正交碼的概念,它作為一種簽名序列應(yīng)用于光碼分多址(OCDMA)系統(tǒng).目前已知的光正交碼存在的大部分結(jié)果都假定碼字的重量為常數(shù),即常重量光正交碼.由于常重量光正交碼不能滿足多種服務(wù)質(zhì)量(QoS)的需求,Yang于1996年引入變重量光正交碼((n,W,Λa,λc,Q)-OOC)用于多媒體光碼分多址(CDMA)通信系統(tǒng)之中.在該系統(tǒng)中,不同用戶使用不同重量的光正交碼,不同重量的光正交碼有不同的誤碼率(BER).
2、低重量的碼字用于低服務(wù)質(zhì)量要求的用戶,高重量的碼字用于高服務(wù)質(zhì)量要求的用戶.因此變重量光正交碼可以使系統(tǒng)滿足多種服務(wù)質(zhì)量要求.下面給出變重量光正交碼的定義.
令n,λc為正整數(shù),W={w1,w2,…,wr}為正整數(shù)集合,Λa=(λ(1)a,λ(2)a,…,λ(r)a)為正整數(shù)數(shù)組,Q=(q1,q2,…,qr)為正有理數(shù)數(shù)組且∑qi=1.(n,W,Λa,λc,Q)變重量光正交碼C(簡(jiǎn)記為(n,W,Λa,λc,Q)-OOC)是一簇
3、長(zhǎng)為n的0,1序列(碼字),并且滿足以下三個(gè)性質(zhì):
(1)碼字重量分布C中所有碼字的漢明重量均在集合W中,且C恰有qi·|C|個(gè)重量為wi的碼字,1≤i≤r,即qi為重量等于wi的碼字占總碼字個(gè)數(shù)的百分比;
(2)周期自相關(guān)性對(duì)任意x=(x0,x1,…,xn-1)∈C,其漢明重量wk∈W,整數(shù)Τ,0<Τ<n,n-1Σi=0xixi⊕Τ≤λ(k)a,1≤k≤r;
(3)周期互相關(guān)性對(duì)任意x≠y,x=(x0,x
4、1,…,xn-1)∈C,y=(y0,y1,…,yn-1)∈C,整數(shù)Τ,0≤Τ<n,n-1∑i=0xiyi⊕Τ≤λc,上述符號(hào)⊕表示對(duì)n取模.若λ(1)a=λ(2)a=…=λ(r)a=λa,我們將(n,W,Λa,λc,Q)-OOC記為(n,W,λa,λc,Q)-OOC;若λa=λc=λ,則記為(n,W,λ,Q)-OOC.若Q=(a1/b,a2/b,ar/b…,)且gcd(a1,a2,…,ar)=1,則稱Q是標(biāo)準(zhǔn)的.顯然,b=r∑i=1 a
5、i.若Q=(1/r,1/r,…,1/r),則稱為平衡的(n,W,Λa,λc)-OOC.
令Φ(n,W,Λa,λc,Q)=max{|C|∶C是(n,W,Λa,λc,Q)-OOC}.關(guān)于變重量光正交碼的碼字個(gè)數(shù),Buratti等人給出以下上界:
若Q=(a1/b,a2/b,…,ar/b)是標(biāo)準(zhǔn)的,則有Φ(n,W,1,Q)≤b|n-1/r∑i=1aiwi(wi-1)|.
對(duì)于給定的n,W,Λa,λc和Q,若C的碼
6、字個(gè)數(shù)Φ(n,W,Λa,λc,Q)達(dá)到最大值,則稱(n,W,Λa,λc,Q)-OOC是最優(yōu)的.
關(guān)于(n, W,1,Q)-OOCs存在性的研究,已有一些結(jié)果.據(jù)作者所知,對(duì)于自相關(guān)系數(shù)不等的變重量光正交碼存在性的研究,當(dāng)Λa≠(1,1),W={3,4},{3,5}時(shí),(n,W,Λa,1,Q)-OOCs的構(gòu)造有一些結(jié)果.本文研究當(dāng)W={3,4,5},Λa=(1,2,1),(1,1,2),(1,2,2)時(shí),(n,W,Λa,1,Q)
7、-OOCs碼字個(gè)數(shù)的上界和組合構(gòu)造,并得到如下定理:
定理1.1若Q=(a1/b,a2/b,a3/b)是標(biāo)準(zhǔn),則有Φ(n,{3,4,5},(1,2,1),1,Q)≤{b([)n-1/△121」,gcd(n,14)=1;b([)n/△121」,gcd(n,14)=2;b([)n+1/△121」,gcd(n,14)=7;b([)n+2/△121」,gcd(n,14)=14,其中△121=6a1+8a2+20a3.
定理1
8、.2若Q=(a1/b,a2/b,a3/b)是標(biāo)準(zhǔn),則有Φ(n,{3,4,5},(1,1,2),1,Q)≤{b([)n-1/△112」, gcd(n,924)=1,2,3,6,7,21;b([)n/△112」, gcd(n,924)=4,14,28,42;b([)n+1/△112」, gcd(n,924)=11,12,22,33,66,77,231;b([)n+2/△112」, gcd(n,924)=44,84,154,308,462;b
9、([)n+3/△112」, gcd(n,924)=132;b([)n+4/△112」, gcd(n,924)=924,其中△112=6a1+12a2+12a3.
定理1.3若Q=(a1/b,a2/b,a3/b)是標(biāo)準(zhǔn),則有Φ(n,{3,4,5},(1,2,2),1,Q)≤{b([)n-1/△122」,gcd(n,924)=1,3;b([)」, gcd(n,924)=2,4,6;b([)n+1/△122」,gcd(n,924)=
10、7,11,21,33;b([)n+2/△122」,gcd(n,924)=12,14,22,28,42,44,66;b([)n+3/△122」, gcd(n,924)=77,231;b([)n+4/△122」,gcd(n,924)=84,132,154,308,462;b([)n+6/△122],gcd(n,924)=924,其中△122=6a1+8a2+12a3.
本文對(duì)Λa=(1,2,1),(1,1,2),(1,2,2)的情
11、形,運(yùn)用斜Starter,平方剩余來(lái)討論(n,{3,4,5},Λa,1,Q)-OOCs的存在性,并得出以下結(jié)果:
定理1.4對(duì)于任意素?cái)?shù)p≥5,且p≠17,存在最優(yōu)且平衡的17-正則(17p,{3,4,5},(1,2,1),1)-OOC.對(duì)于p=17,存在最優(yōu)且平衡的(17p,{3,4,5},(1,2,1),1)-OOC.
定理1.5對(duì)于任意素?cái)?shù)p≥5,存在最優(yōu)的27-正則(27p,{3,4,5},(1,2,1),1
12、,(1/4,1/4,2/4))-OOC.
定理1.6對(duì)于任意素?cái)?shù)p≥5,且p≠7,存在最優(yōu)的21-正則(21p,{3,4,5},(1,2,1),1,(1/4,2/4,1/4))-OOC.對(duì)于p=7,存在最優(yōu)的(21p,{3,4,5},(1,2,1),1,(1/4,2/4,1/4))-OOC.
定理1.7若gcd(v,5)=1且在Zv上存在斜Starter,則存在最優(yōu)的20-正則(20v,{3,4,5},(1,2,1)
13、,1,(2/4,1/4,1/4))-OOC.
定理1.8若gcd(v,5)=1且在Zv上存在斜Starter,則存在最優(yōu)且平衡的15-正則(15v,{3,4,5},(1,1,2),1)-OOC.
定理1.9對(duì)于任意的素?cái)?shù)p≥5,且p≠7,存在最優(yōu)的21-正則(21p,{3,4,5},(1,1,2),1,(1/4,1/4,2/4))-OOC.對(duì)于p=7,存在最優(yōu)的(21p,{3,4,5},(1,1,2),1,(1/4,
14、1/4,2/4))-OOC.
定理1.10對(duì)于任意的素?cái)?shù)p≥5,且p≠7,存在最優(yōu)的21-正則(21p,{3,4,5},(1,1,2),1,(1/4,2/4,1/4))-OOC.對(duì)于p=7,存在最優(yōu)的(21p,{3,4,5},(1,1,2),1,(1/4,2/4,1/4))-OOC.
定理1.11設(shè)在Zv上存在斜Starter,則存在最優(yōu)的18-正則(18v,{3,4,5},(1,1,2),1,(2/4,1/4,1/
15、4))-OOC.
定理1.12對(duì)于任意的素?cái)?shù)p≥5,且p≠13,存在最優(yōu)且平衡的13-正則(13p,{3,4,5},(1,2,2),1)-OOC.對(duì)于p=13,存在最優(yōu)且平衡的(13p,{3,4,5},(1,2,2),1)-OOC.
定理1.13對(duì)于任意的素?cái)?shù)p≥5,且p≠19,存在最優(yōu)19-正則(19p,{3,4,5},(1,2,2),1,(1/4,1/4,2/4))-OOC.對(duì)于p=19,存在最優(yōu)(19p,{3,
16、4,5},(1,2,2),1,(1/4,1/4,2/4))-OOC.
定理1.14對(duì)于任意的素?cái)?shù)p≥5,且p≠17,存在最優(yōu)的17-正則(17p,{3,4,5},(1,2,2),1,(1/4,2/4,1/4))-OOC.對(duì)于p=17,存在最優(yōu)的(17p,{3,4,5},(1,2,2),1,(1/4,2/4,1/4))-OOC.
定理1.15設(shè)在玩上存在斜Starter,則存在最優(yōu)的16-正則(16v,{3,4,5},
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 自相關(guān)系數(shù)不全為1的最優(yōu)(n,{3,4,5},Λα,1,Q)——OOCs的界和構(gòu)造.pdf
- 最優(yōu)(n,{3,5},Λα1,Q)光正交碼的界與構(gòu)造.pdf
- 最優(yōu)(n,{3,4},Λα,1,Q)光正交碼的界與構(gòu)造.pdf
- 最優(yōu)(n,3,2,1)光正交碼的組合構(gòu)造.pdf
- 四級(jí)作文寫作第3,4,5講段落的擴(kuò)展
- 2-[N-(取代苯胺基)]-5-(3,4,5-三甲氧基苯基)-1,3,4-噻二唑的合成與生物活性研究.pdf
- 置換碼的界及構(gòu)造的研究.pdf
- 日語(yǔ)3_4級(jí)詞匯(包含新n5-n3)
- 重量為5的最優(yōu)光正交碼的組合構(gòu)造.pdf
- n2、n3、n4、n5,則將n3作為種群密度的估計(jì)值。
- 度為5,強(qiáng)度為2的最優(yōu)檢測(cè)陣列的構(gòu)造.pdf
- t=3,k=4,5的混合正交陣列的構(gòu)造.pdf
- 3,4,5-三甲氧基苯乙酸的合成研究.pdf
- PSL(2,q)與單純3-設(shè)計(jì)的構(gòu)造.pdf
- 30143.3(3,m,q)可分碼的碼字個(gè)數(shù)上界及構(gòu)造
- A-,n-B-,n-1-O-,3n-(n=4、5)微波介質(zhì)陶瓷的A、B位陽(yáng)離子取代的結(jié)構(gòu)與性能改性研究.pdf
- 3,4,5-羥基-2-肟基苯甲酸的合成及在涂料中的應(yīng)用.pdf
- 最優(yōu)的集合差系統(tǒng)的構(gòu)造.pdf
- EGCG中間體3,4,5-三芐氧基肉桂醇的合成.pdf
- H1N2、H3N2及H5N1亞型豬流感病毒進(jìn)化及致病性研究.pdf
評(píng)論
0/150
提交評(píng)論