2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩121頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、質(zhì)譜(MS)是一種儀器分析技術(shù),它能夠有效地解析聚糖結(jié)構(gòu)并提供定性和定量的信息。糖組學(xué)是研究生物體內(nèi)糖的分子結(jié)構(gòu)及生物功能的科學(xué)。隨著糖組學(xué)的發(fā)展,大量的聚糖結(jié)構(gòu)通過解析質(zhì)譜實(shí)驗(yàn)數(shù)據(jù)而確定。最近生物信息技術(shù)的發(fā)展提供了一個利用聚糖結(jié)構(gòu)數(shù)據(jù)庫和從頭算法對MS或MS/MS數(shù)據(jù)提取有價值的信息的機(jī)會。功能糖組學(xué)協(xié)會(CFG)已經(jīng)提供的基于網(wǎng)絡(luò)的資源,使獲得聚糖質(zhì)譜實(shí)驗(yàn)數(shù)據(jù)和聚糖結(jié)構(gòu)信息變得更加容易。然而,大量由質(zhì)譜獲取的聚糖分析的數(shù)據(jù)需要手動

2、注釋。此項(xiàng)工作不但耗時,而且精確度很低。此外,檢測被埋沒在噪音數(shù)據(jù)中的低強(qiáng)度信號峰仍然是一個挑戰(zhàn)。因此,開發(fā)從MS數(shù)據(jù)中準(zhǔn)確預(yù)測和注釋聚糖結(jié)構(gòu)的算法是非常需要的。
  本研究開發(fā)了一種基于匹配聚糖分子的同位素相對豐度(mGIA)的方法來預(yù)測和注釋聚糖的單糖組成(糖組成)和單糖間連接方式(糖結(jié)構(gòu))的算法,它利用質(zhì)譜數(shù)據(jù)中分子同位素的觀測質(zhì)荷比值,豐度特征以及兩者之間的關(guān)系。首先構(gòu)建了一個完整的聚糖分子的單糖組成庫,其中包含了808個

3、聚糖的單糖以及聚糖分子相應(yīng)的同位素理論豐度。同時,利用CFG數(shù)據(jù)庫中得到的樣品數(shù)據(jù)并結(jié)合了一個有效的數(shù)據(jù)預(yù)處理技術(shù)生成了含有所有候選組成的數(shù)據(jù)集。數(shù)據(jù)預(yù)處理是為了從MS數(shù)據(jù)中精確地提取聚糖同位素觀測峰簇,包括基線消除,平滑去噪,峰質(zhì)心化處理和一個基于庫的組成匹配方法。有別于大多數(shù)已報(bào)道的方法,不僅考慮到峰的質(zhì)荷比值特征,還引入了相應(yīng)的聚糖分子同位素的理論和觀測豐度向量之間的歐幾里德距離。為了解決不同聚糖分子同位素會出現(xiàn)重疊的問題,在匹配

4、計(jì)算中增加了對重疊的區(qū)域的預(yù)測和識別。如果兩個匹配到的組成的質(zhì)荷比的差值接近于1至4之間的一個整數(shù),并且每個峰各有一個相匹配的理論聚糖組成,那么就認(rèn)為這兩個糖組成的前五個同位素峰的質(zhì)荷比是一個潛在的重疊區(qū)域。在每個樣品數(shù)據(jù)中,發(fā)現(xiàn)了超過20個潛在的重疊區(qū)域。通過構(gòu)建一個最優(yōu)化模型對每個潛在的重疊區(qū)域內(nèi)的聚糖同位素簇進(jìn)行了去卷積處理從而改善了mGIA算法。
  為了提高聚糖結(jié)構(gòu)注釋的精確度,提出了一個線性分類的評估方法。在分類器獲取

5、過程中,使用支持向量機(jī)(SVM)算法訓(xùn)練了三個候選聚糖組成數(shù)據(jù)集,它們是源于CFG profiling數(shù)據(jù)庫中的三個不同的人體組織樣品數(shù)據(jù)。并使用CFG profiling數(shù)據(jù)庫中的小鼠腎臟樣品數(shù)據(jù)對算法進(jìn)行了驗(yàn)證,結(jié)果顯示比他人的注釋多鑒定出6個聚糖組成。并且與已報(bào)道的算法相比,顯著改善了對豐度較弱的離子的檢測。因?yàn)閺腃FG profiling數(shù)據(jù)庫的7個CHO樣品數(shù)據(jù)獲得的訓(xùn)練數(shù)據(jù)集具有不平衡性,影響了分類器效果。因此嘗試了幾種不同

6、的采樣技術(shù),如過采樣技術(shù)SMOTE等,分別與支持向量機(jī)(SVMs)算法相結(jié)合對候選聚糖組成集進(jìn)行訓(xùn)練。結(jié)果顯示通過SMOTE-支持向量機(jī)算法,所有樣品的注釋靈敏度平均增長了26.8%。基于這個注釋算法,開發(fā)了一個名為GlycoMaid的系統(tǒng)來幫助用戶使用聚糖組成自動標(biāo)注質(zhì)譜實(shí)驗(yàn)數(shù)據(jù),并列出注釋的可信度以及所有在CFG數(shù)據(jù)庫中的候選結(jié)構(gòu)鏈接。軟件包和源代碼發(fā)布在http://code.google.com/p/glycomaid/。

7、>  為了豐富注釋的聚糖組成的候選結(jié)構(gòu)集,通過一系列酶反應(yīng)規(guī)則模擬了在內(nèi)質(zhì)網(wǎng)和高爾基體中的生物合成過程。結(jié)果發(fā)現(xiàn)具有較高質(zhì)荷比值的聚糖組成在生成的結(jié)果中會出現(xiàn)較多的假陽性結(jié)構(gòu)。還嘗試使用了組織信息對來自CFG結(jié)構(gòu)數(shù)據(jù)庫的注釋結(jié)果進(jìn)行過濾,遺憾的是現(xiàn)有的生物信息非常有限,使得這種方法目前還不夠理想。
  在本論文中,自主開發(fā)了mGIA算法來自動解析質(zhì)譜數(shù)據(jù)并準(zhǔn)確的注釋聚糖的組成和結(jié)構(gòu)。該算法的優(yōu)勢是分析低豐度峰和處理重疊聚糖同位素峰

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論