版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、Engineering Mathematics,Complex Variables & ApplicationsChapter 4,鄭偉詩wszheng@ieee.org, http://sist.sysu.edu.cn/~zhwshi/,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 2,Outlilne,1、Definition of Integral,2、C
2、ondition for Existence of Integral and Methods of Calculation,3、Properties of Integral,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 3,Curve, Contours,arc,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page
3、 4,Contours,When the arc C is simple except for the fact that z(b)=z(a), we say Cis a simple closed curve, or a Jordan curve.,Simple arc / Jordan arc,The arc C is a simple arc, or a Jordan arc, if it does not cross its
4、elf.,Simple closed curve / Jordan curve,The positive orientation is the counterclockwise direction.,Positively oriented curve,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 5,5,Contours,Contour,Differentiable arc,Le
5、ngth of C,Simple closed contour,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 6,6,Contour Integral,,,,,,,,,,,Suppose function is defined in domain D, C is a contour in D from point A to point B. Divid
6、e curve C into n segmented lines, the points of division are denoted by,Randomly pick a point from each segment of curve,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 7,7,(,If has an unique limit reg
7、ardless of the division of C and partition method of ,then we call this limit value as the integral of function on curve C, denoted by,Contour Integral,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 8,Co
8、ntour Integral,Along a contour C,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 9,Contour Integral,To compute,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 10,About the definition:,then this definition is same
9、 to the definition of integral for single real variable function.,Contour Integral,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 11,11,*Example1:,*Solution:,The line equation is,Contour Integral,Wei-Shi Zhengwszhen
10、g@ieee.org,2024/3/16, Page 12,12,,,these two integral have nothing do with path-integral C,then regardless of the curve movementto point,Contour Integral,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 13,13,*Exa
11、mple 2:,*Solution:,(1) The parametric equation is,,y=x,Contour Integral,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 14,(2) parametric equation is,,Contour Integral,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Pag
12、e 15,(3) integration path is composed by two line segments,,,parametric equation of straight-line segment along x-axis is,parametric equation of straight-line segment from point 1 to point 1+i is,Contour Integral,Wei-Shi
13、 Zhengwszheng@ieee.org,2024/3/16, Page 16,16,*Example 3:,*Solution:,Parametric equation of integration path,(since |z|=2),Contour Integral,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 17,17,*Example 4:,*Soluti
14、on:,Parametric equation of integrationpath is:,,,,,Contour Integral,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 18,18,,Important Conclusion: integral value is independent to the center point and radius of the ci
15、rcle.,when n=0,when,Contour Integral,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 19,With Branch Cut,Contour Integral,?,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 20,Properties of Integral,Complex integral
16、has similar properties with definite integral of real variable function.,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 21,Properties of Integral,板書證明,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 22,Anti-Deriva
17、tives,板書證明,,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 23,,,? Not D but a curve,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 24,Cauchy–Goursat theorem,,,板書證明,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, P
18、age 25,Cauchy–Goursat theorem,,Applications:,,simple closed contour, closed contours (intersection: finite / infinite),板書證明,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 26,Cauchy–Goursat theorem,Example:,Wei-Shi Z
19、hengwszheng@ieee.org,2024/3/16, Page 27,Recall the following theorem,Cauchy–Goursat theorem,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 28,Cauchy–Goursat theorem,板書證明,Wei-Shi Zhengwszheng@ieee.org,2024/3/16,
20、 Page 29,Cauchy–Goursat theorem,principle of deformation of paths,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 30,Cauchy–Goursat theorem,Example:,?,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 31,Cauchy I
21、ntegral Formula,板書證明,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 32,Cauchy Integral Formula,,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 33,Cauchy Integral Formula,Gauss's mean value theorem,,Wei-Shi
22、Zhengwszheng@ieee.org,2024/3/16, Page 34,Extensions: Analytic,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 35,Extensions: Analytic,,,,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 36,Extensions: Analyti
23、c,,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 37,Extension: Liouville’s theorem,,,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page 38,Extension: Max Modulus,,Wei-Shi Zhengwszheng@ieee.org,2024/3/16, Page
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 復變函數(shù)與積分變換1
- 復變函數(shù)與積分變換試題
- [學習]復變函數(shù)與積分變換課件1.5復變函數(shù)
- [學習]復變函數(shù)與積分變換
- [學習]復變函數(shù)與積分變換第3章復變函數(shù)的積分
- [學習]復變函數(shù)與積分變換-傅立葉變換
- [學習]復變函數(shù)與積分變換第1章函數(shù)與復變函數(shù)
- 復變函數(shù)與積分變換(b卷)
- 《復變函數(shù)與積分變換》習題冊
- 復變函數(shù)與積分變換公式匯總
- 復變函數(shù)與積分變換復習重點
- 復變函數(shù)與積分變換作業(yè)答案
- 復變函數(shù)與積分變換-復習重點
- [學習]復變函數(shù)與積分變換課件3.1復積分的概念
- 復變函數(shù)與積分變換自測題
- 高校!復變函數(shù)與積分變換復習重點
- 復變函數(shù)與積分變換(宋叔尼
- 復變函數(shù)與積分變換復習題
- 《復變函數(shù)與積分變換》教學大綱
- 惠州學院復變函數(shù)與積分變換復習
評論
0/150
提交評論