版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、我們首先介紹了基于矩陣對A,B以及一對向量u1,u2的廣義二階Krylov子空間((G)m(A,B;u1,u2))的相關(guān)知識,進(jìn)而將其推廣,引入了廣義二階左右Krylov子空間,分別記為(G)m(A,B; u1,u2)和(G)m(AT,BT; v1,v2)。其中空間(G)m(A,B; u1,u2)是由以A,B為系數(shù)矩陣u1,u2為初始向量的二階齊次線性遞推關(guān)系得到的向量張成的,它是對由矩陣對A,B以及一個初始向量u所生成的二階Krylo
2、v子空間(G)m(A,B;u)的推廣。
在給出了廣義二階左右Krylov子空間定義的基礎(chǔ)上我們研究了其與標(biāo)準(zhǔn)Krylov子空間在解二次特征值問題上的區(qū)別與聯(lián)系,然后提出了一種基于二階雙正交方法(SOB)的修正的二階雙正交的方法(MSOB),并且對其進(jìn)行改進(jìn)得到一種既節(jié)省存儲又能減少運(yùn)算量的修正二階雙正交方法。通過修正的二階雙正交方法(MSOB)我們得到廣義二階左右Krylov子空間的一組雙正交基。
我們采用斜投影技術(shù)
3、以及重啟向量選擇技巧進(jìn)一步提出可重啟的修正二階雙正交方法(RMSOB(m)來解決二次特征值問題(QEP)。這種方法的優(yōu)點(diǎn)有以下幾點(diǎn):
一、由于其直接應(yīng)用于二次特征值問題,因此它保持了原有二次特征值問題在結(jié)構(gòu)及性質(zhì)上的一些優(yōu)點(diǎn)(對稱性等);
二、它可以同時求得QEP的左右特征向量;
三、重啟方法的應(yīng)用可以避免SOB方法隨著迭代增加所帶來的存儲量的增加以及雙正交性不能保持所帶來的誤差。
最后,本文從理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二階雙正交過程和二次特征值問題求解.pdf
- 二次特征值問題及其關(guān)聯(lián)的二階矩陣方程.pdf
- 二階邊值問題的正特征值問題.pdf
- 二階RLC電路設(shè)計中的結(jié)構(gòu)化二次特征值反問題.pdf
- 48414.求解二次特征值問題的隱式重啟混合(塊)soar方法
- 非線性特征值問題的二次近似方法.pdf
- 二次特征值逆問題的模型修正方法.pdf
- 魯棒部分二次特征值配置問題的數(shù)值方法.pdf
- 二階非線性特征值問題極限解的正則性與解的唯一性.pdf
- 二次矩陣方程及相應(yīng)特征值問題.pdf
- 求解陀螺系統(tǒng)特征值問題的收縮二階Lanczos方法及其塊格式.pdf
- 幾類二階線性不定權(quán)問題最小正特征值的研究.pdf
- 一類二階錐上的張量特征值互補(bǔ)問題.pdf
- 41556.牛頓線性搜索方法檢驗與求解雙曲型二次特征值問題
- 部分正交廣義Arnoldi方法及其對非線性特征值問題的應(yīng)用.pdf
- 19852.二次特征值反問題的數(shù)值解法及其應(yīng)用
- 23743.大型稀疏二次特征值問題求解算法的研究
- 能量依賴位勢的二階特征值問題相關(guān)的發(fā)展方程族及Lax表示.pdf
- 二階差分方程特征值問題及復(fù)離散哈密頓系統(tǒng)的變換.pdf
- 二階錐約束二次規(guī)劃逆問題的光滑牛頓法.pdf
評論
0/150
提交評論